
David
Typewritten Text

David
Typewritten Text
Excerpt provided courtesy of Morgan & Claypool Publishers

David
Typewritten Text

David
Typewritten Text

David
Typewritten Text
Full text Available at:https://doi.org/10.2200/S00346ED1V01Y201104CAC016

David
Typewritten Text

David
Typewritten Text

https://doi.org/10.2200/S00346ED1V01Y201104CAC016
David
Typewritten Text

A Primer on Memory Consistency
and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #16

ABSTRACT
Many modern computer systems and most multicore chips (chip multiprocessors) support shared
memory in hardware. In a shared memory system, each of the processor cores may read and write
to a single shared address space. For a shared memory machine, the memory consistency model
defines the architecturally visible behavior of its memory system. Consistency definitions provide
rules about loads and stores (or memory reads and writes) and how they act upon memory. As part
of supporting a memory consistency model, many machines also provide cache coherence proto-
cols that ensure that multiple cached copies of data are kept up-to-date. The goal of this primer
is to provide readers with a basic understanding of consistency and coherence. This understanding
includes both the issues that must be solved as well as a variety of solutions. We present both high-
level concepts as well as specific, concrete examples from real-world systems.

vi

KEYWORDS
computer architecture, memory consistency, cache coherence, shared memory, memory systems,
multicore processor, multiprocessor

Copyright © 2011 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
www.morganclaypool.com

ISBN: 9781608455645 paperback

ISBN: 9781608455652 ebook

DOI: 10.2200/S00346ED1V01Y201104CAC016

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #16

Lecture #16

Series Editor: Mark D. Hill, University of Wisconsin

Series ISSN

ISSN 1935-3235 print

ISSN 1935-3243 electronic

ix

Preface ... ix

1. Introduction to Consistency and Coherence ...1
1.1 Consistency (a.k.a., Memory Consistency, Memory Consistency Model,

or Memory Model) .. 2
1.2 Coherence (a.k.a., Cache Coherence) .. 4
1.3 A Consistency and Coherence Quiz .. 6
1.4 What this Primer Does Not Do .. 6

2. Coherence Basics ..9
2.1 Baseline System Model ... 9
2.2 The Problem: How Incoherence Could Possibly Occur 10
2.3 Defining Coherence .. 11

2.3.1 Maintaining the Coherence Invariants .. 13
2.3.2 The Granularity of Coherence .. 13
2.3.3 The Scope of Coherence ... 15

2.4 References .. 15

3. Memory Consistency Motivation and Sequential Consistency 17
3.1 Problems with Shared Memory Behavior .. 17
3.2 What Is a Memory Consistency Model? ... 20
3.3 Consistency vs. Coherence .. 21
3.4 Basic Idea of Sequential Consistency (SC) .. 22
3.5 A Little SC Formalism .. 24
3.6 Naive SC Implementations ... 26
3.7 A Basic SC Implementation with Cache Coherence... 27
3.8 Optimized SC Implementations with Cache Coherence 29
3.9 Atomic Operations with SC .. 32
3.10 Putting it All Together: MIPS R10000 ... 33

Contents

x A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

3.11 Further Reading Regarding SC ... 34
3.12 References .. 35

4. Total Store Order and the x86 Memory Model .. 37
4.1 Motivation for TSO/x86 ... 37
4.2 Basic Idea of TSO/x86 .. 38
4.3 A Little TSO Formalism and an x86 Conjecture .. 42
4.4 Implementing TSO/x86 .. 45
4.5 Atomic Instructions and Fences with TSO ... 46

4.5.1 Atomic Instructions ... 46
4.5.2 Fences .. 47

4.6 Further Reading Regarding TSO .. 47
4.7 Comparing SC and TSO ... 48
4.8 References .. 49

5. Relaxed Memory Consistency .. 51
5.1 Motivation ... 51

5.1.1 Opportunities to Reorder Memory Operations 52
5.1.2 Opportunities to Exploit Reordering .. 53

5.2 An Example Relaxed Consistency Model (XC) .. 55
5.2.1 The Basic Idea of the XC Model... 55
5.2.2 Examples Using Fences under XC... 56
5.2.3 Formalizing XC ... 57
5.2.4 Examples Showing XC Operating Correctly... 59

5.3 Implementing XC ... 61
5.3.1 Atomic Instructions with XC .. 62
5.3.2 Fences with XC ... 64
5.3.3 A Caveat .. 64

5.4 Sequential Consistency for Data-Race-Free Programs 64
5.5 Some Relaxed Model Concepts ... 68

5.5.1 Release Consistency ... 68
5.5.2 Causality and Write Atomicity .. 69

5.6 A Relaxed Memory Model Case Study: IBM Power .. 70
5.7 Further Reading and Commercial Relaxed Memory Models 74

5.7.1 Academic Literature .. 74
5.7.2 Commercial Models .. 74

5.8 Comparing Memory Models ... 75
5.8.1 How Do Relaxed Memory Models Relate to Each Other and

TSO and SC? 75
5.8.2 How Good Are Relaxed Models? .. 76

5.9 High-Level Language Models .. 76
5.10 References .. 79

6. Coherence Protocols ... 83
6.1 The Big Picture ... 83
6.2 Specifying Coherence Protocols .. 85
6.3 Example of a Simple Coherence Protocol ... 86
6.4 Overview of Coherence Protocol Design Space .. 88

6.4.1 States ... 88
6.4.2 Transactions ... 92
6.4.3 Major Protocol Design Options .. 95

6.5 References .. 97

7. Snooping Coherence Protocols .. 99
7.1 Introduction to Snooping .. 99
7.2 Baseline Snooping Protocol ... 103

7.2.1 High-Level Protocol Specification .. 104
7.2.2 Simple Snooping System Model: Atomic Requests,

Atomic Transactions 104
7.2.3 Baseline Snooping System Model: Non-Atomic Requests,

Atomic Transactions 109
7.2.4 Running Example .. 113
7.2.5 Protocol Simplifications... 114

7.3 Adding the Exclusive State.. 115
7.3.1 Motivation ... 115
7.3.2 Getting to the Exclusive State ... 115
7.3.3 High-Level Specification of Protocol .. 116
7.3.4 Detailed Specification .. 118
7.3.5 Running Example .. 119

7.4 Adding the Owned State ... 119
7.4.1 Motivation ... 119
7.4.2 High-Level Protocol Specification .. 121

CONTENTS xi

xii A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

7.4.3 Detailed Protocol Specification ... 121
7.4.4 Running Example .. 122

7.5 Non-Atomic Bus ... 123
7.5.1 Motivation ... 124
7.5.2 In-Order vs. Out-of-Order Responses .. 124
7.5.3 Non-Atomic System Model .. 124
7.5.4 An MSI Protocol with a Split-Transaction Bus 126
7.5.5 An Optimized, Non-Stalling MSI Protocol with a

Split-Transaction Bus 130
7.6 Optimizations to the Bus Interconnection Network 132

7.6.1 Separate Non-Bus Network for Data Responses 132
7.6.2 Logical Bus for Coherence Requests ... 133

7.7 Case Studies .. 133
7.7.1 Sun Starfire E10000 .. 133
7.7.2 IBM Power5 .. 135

7.8 Discussion and the Future of Snooping ... 137
7.9 References .. 138

8. Directory Coherence Protocols .. 139
8.1 Introduction to Directory Protocols .. 139
8.2 Baseline Directory System ... 141

8.2.1 Directory System Model ... 141
8.2.2 High-level Protocol Specification .. 142
8.2.3 Avoiding Deadlock .. 144
8.2.4 Detailed Protocol Specification ... 146
8.2.5 Protocol Operation .. 147
8.2.6 Protocol Simplifications... 149

8.3 Adding the Exclusive State.. 150
8.3.1 High-Level Protocol Specification .. 150
8.3.2 Detailed Protocol Specification ... 152

8.4 Adding the Owned State ... 153
8.4.1 High-Level Protocol Specification ... 153
8.4.2 Detailed Protocol Specification ... 155

8.5 Representing Directory State .. 156
8.5.1 Coarse Directory .. 157
8.5.2 Limited Pointer Directory .. 157

8.6 Directory Organization ... 158
8.6.1 Directory Cache Backed by DRAM ... 159
8.6.2 Inclusive Directory Caches .. 160
8.6.3 Null Directory Cache (with no backing store)..................................... 163

8.7 Performance and Scalability Optimizations... 163
8.7.1 Distributed Directories .. 163
8.7.2 Non-Stalling Directory Protocols .. 164
8.7.3 Interconnection Networks without Point-to-Point Ordering 166
8.7.4 Silent vs. Non-Silent Evictions of Blocks in State S 168

8.8 Case Studies .. 169
8.8.1 SGI Origin 2000 ... 169
8.8.2 Coherent HyperTransport ... 171
8.8.3 HyperTransport Assist... 172
8.8.4 Intel QPI ... 173

8.9 Discussion and the Future of Directory Protocols ... 175
8.10 References .. 175

9. Advanced Topics in Coherence .. 177
9.1 System Models .. 177

9.1.1 Instruction Caches ... 177
9.1.2 Translation Lookaside Buffers (TLBs) .. 178
9.1.3 Virtual Caches ... 179
9.1.4 Write-Through Caches ... 180
9.1.5 Coherent Direct Memory Access (DMA)... 180
9.1.6 Multi-Level Caches and Hierarchical Coherence Protocols 181

9.2 Performance Optimizations ... 184
9.2.1 Migratory Sharing Optimization .. 184
9.2.2 False Sharing Optimizations ... 185

9.3 Maintaining Liveness .. 186
9.3.1 Deadlock ... 186
9.3.2 Livelock ... 189
9.3.3 Starvation .. 192

9.4 Token Coherence ... 193
9.5 The Future of Coherence .. 193
9.6 References .. 193

Author Biographies .. 197

CONTENTS xiii

DIRECTORY COHERENCE PROTOCOLS 141

In contrast, a directory protocol orders transactions at the directory to ensure that conflicting
requests are processed by all nodes in per-block order. However, the lack of a total order means that
a requestor in a directory protocol needs another strategy to determine when its request has been
serialized and thus when its coherence epoch may safely begin. Because (most) directory protocols
do not use totally ordered broadcast, there is no global notion of serialization. Rather, a request must
be individually serialized with respect to all the caches that (may) have a copy of the block. Explicit
messages are needed to notify the requestor that its request has been serialized by each relevant
cache. In particular, on a GetM request, each cache controller with a shared (S) copy must send an
explicit acknowledgment (Ack) message once it has serialized the invalidation message.

This comparison between directory and snooping protocols highlights the fundamental trade-
off between them. A directory protocol achieves greater scalability (i.e., because it requires less
bandwidth) at the cost of a level of indirection (i.e., having three steps, instead of two steps, for
some transactions). This additional level of indirection increases the latency of some coherence
transactions.

8.2 BASELINE DIRECTORY SYSTEM
In this section, we present a baseline system with a straightforward, modestly optimized directory
protocol. This system provides insight into the key features of directory protocols while revealing
inefficiencies that motivate the features and optimizations presented in subsequent sections of this
chapter.

8.2.1 Directory System Model
We illustrate our directory system model in Figure 8.1. Unlike for snooping protocols, the topol-
ogy of the interconnection network is intentionally vague. It could be a mesh, torus, or any other
topology that the architect wishes to use. One restriction on the interconnection network that we
assume in this chapter is that it enforces point-to-point ordering. That is, if controller A sends two
messages to controller B, then the messages arrive at controller B in the same order in which they
were sent.1 Having point-to-point ordering reduces the complexity of the protocol, and we defer a
discussion of networks without ordering until Section 8.7.3.

The only differences between this directory system model and the baseline system model in
Figure 2.1 is that we have added a directory and we have renamed the memory controller to be the

1 Strictly speaking, we require point-to-point order for only certain types of messages, but this is a detail that we
defer until Section 8.7.3.

142 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

directory controller. There are many ways of sizing and organizing the directory, and for now we as-
sume the simplest model: for each block in memory, there is a corresponding directory entry. In Sec-
tion 8.6, we examine and compare more practical directory organization options. We also assume
a monolithic LLC with a single directory controller; in Section 8.7.1, we explain how to distribute
this functionality across multiple banks of an LLC and multiple directory controllers.

8.2.2 High-Level Protocol Specification
The baseline directory protocol has only three stable states: MSI. A block is owned by the directory
controller unless the block is in a cache in state M. The directory state for each block includes the
stable coherence state, the identity of the owner (if the block is in state M), and the identities of the

cache
controller

core

cache
controller

core

interconnection network

LLC/directory
controller

last-level
cache
(LLC)

MULTICORE PROCESSOR CHIP

MAIN MEMORY

private
data (L1)
cache

private
data (L1)
cache

directory

FIguRE 8.1: Directory system model.

2-bit log2 N-bit

state owner sharer list (one-hot bit vector)

N-bit

FIguRE 8.2: Directory entry for a block in a system with N nodes.

DIRECTORY COHERENCE PROTOCOLS 143

sharers encoded as a one-hot bit vector (if the block is in state S). We illustrate a directory entry in
Figure 8.2. In Section 8.5, we will discuss other encodings of directory entries.

Before presenting the detailed specification, we first illustrate a higher level abstraction of the
protocol in order to understand its fundamental behaviors. In Figure 8.3, we show the transactions
in which a cache controller issues coherence requests to change permissions from I to S, I or S to

(1) GetS

(2) Data

(1) GetM

(2) Data[ack=0]

(1) GetS (2) Fwd-GetS

(3) Data

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

(1) PutM+data

(2) Put-Ack

(1) GetM

(2) Data[ack>0]

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I to S.

Transitions from I or S to M

Transition from M or S to I

(2) Inv

The only sharer might be the requestor,
in which case no Invalidation messages
are sent and the Data message from
the Dir to Req has an AckCount of zero.

(3) Data

(1) PutS

(2) Put-Ack

I S
Req

SI
S S

Dir Req
SI

Dir
SM

Owner
SM

I M
Req Dir

MI I M
Req Dir

MM
Owner

IM

MI
S M

Req
Dir

MS

Sharer
IS

Sharer
IS

M I
Req

M I
Dir

S I
Req IS

S S

Dir

FIguRE 8.3: High-Level Description of MSI Directory Protocol. In each transition, the cache con-
troller that requests the transaction is denoted “Req”.

144 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

M, M to I, and S to I. As with the snooping protocols in the last chapter, we specify the directory
state of a block using a cache-centric notation (e.g., a directory state of M denotes that there exists a
cache with the block in state M). Note that a cache controller may not silently evict a Shared block;
that is, there is an explicit PutS request. We defer a discussion of protocols with silent evictions of
shared blocks, as well as a comparison of silent versus explicit PutS requests, until Section 8.7.4.

Most of the transactions are fairly straightforward, but two transactions merit further dis-
cussion here. The first is the transaction that occurs when a cache is trying to upgrade permissions
from I or S to M and the directory state is S. The cache controller sends a GetM to the directory,
and the directory takes two actions. First, it responds to the requestor with a message that includes
the data and the “AckCount”; the AckCount is the number of current sharers of the block. The
directory sends the AckCount to the requestor to inform the requestor of how many sharers must
acknowledge having invalidated their block in response to the GetM. Second, the directory sends
an Invalidation (Inv) message to all of the current sharers. Each sharer, upon receiving the Invalida-
tion, sends an Invalidation-Ack (Inv-Ack) to the requestor. Once the requestor receives the message
from the directory and all of the Inv-Ack messages, it completes the transaction. The requestor,
having received all of the Inv-Ack messages, knows that there are no longer any readers of the block
and thus it may write to the block without violating coherence.

The second transaction that merits further discussion occurs when a cache is trying to evict a
block in state M. In this protocol, we have the cache controller send a PutM message that includes
the data to the directory. The directory responds with a Put-Ack. If the PutM did not carry the data
with it, then the protocol would require a third message—a data message from the cache controller
to the directory with the evicted block that had been in state M—to be sent in a PutM transaction.
The PutM transaction in this directory protocol differs from what occurred in the snooping proto-
col, in which a PutM did not carry data.

8.2.3 Avoiding Deadlock
In this protocol, the reception of a message can cause a coherence controller to send another mes-
sage. In general, if event A (e.g., message reception) can cause event B (e.g., message sending) and
both these events require resource allocation (e.g., network links and buffers), then we must be
careful to avoid deadlock that could occur if circular resource dependences arise. For example, a
GetS request can cause the directory controller to issue a Fwd-GetS message; if these messages use
the same resources (e.g., network links and buffers), then the system can potentially deadlock. In
Figure 8.4, we illustrate a deadlock in which two coherence controllers C1 and C2 are responding
to each other’s requests, but the incoming queues are already full of other coherence requests. If the
queues are FIFO, then the responses cannot pass the requests. Because the queues are full, each con-

DIRECTORY COHERENCE PROTOCOLS 145

troller stalls trying to send a response. Because the queues are FIFO, the controller cannot switch to
work on a subsequent request (or get to the response). Thus, the system deadlocks.

A well-known solution for avoiding deadlock in coherence protocols is to use separate net-
works for each class of message. The networks can be physically separate or logically separate (called
virtual networks), but the key is avoiding dependences between classes of messages. Figure 8.5
illustrates a system in which request and response messages travel on separate physical networks.
Because a response cannot be blocked by another request, it will eventually be consumed by its des-
tination node, breaking the cyclic dependence.

The directory protocol in this section uses three networks to avoid deadlock. Because a re-
quest can cause a forwarded request and a forwarded request can cause a response, there are three
message classes that each require their own network. Request messages are GetS, GetM, and PutM.
Forwarded request messages are Fwd-GetS, Fwd-GetM, Inv(alidation), and Put-Ack. Response
messages are Data and Inv-Ack. The protocols in this chapter require that the Forwarded Request
network provides point-to-point ordering; other networks have no ordering constraints nor are
there any ordering constraints between messages traveling on different networks.

C1

C2
Data response

Data response
full of requests

full of requests

FIguRE 8.4: Deadlock example.

 C1

 C2
Data response

Data response

full of requests

full of requests

FIguRE 8.5: Avoiding deadlock with separate networks.

146 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

We defer a more thorough discussion of deadlock avoidance, including more explanation of
virtual networks and the exact requirements for avoiding deadlock, until Section 9.3.

8.2.4 Detailed Protocol Specification
We present the detailed protocol specification, including all transient states, in Tables 8.1 and 8.2.
Compared to the high-level description in Section 8.2.2, the most significant difference is the tran-
sient states. The coherence controllers must manage the states of blocks that are in the midst of
coherence transactions, including situations in which a cache controller receives a forwarded request
from another controller in between sending its coherence request to the directory and receiving all
of its necessary response messages, including Data and possible Inv-Acks. The cache controllers can
maintain this state in the miss status handling registers (MSHRs) that cores use to keep track of
outstanding coherence requests. Notationally, we represent these transient states in the form XYAD,
where the superscript A denotes waiting for acknowledgments and the superscript D denotes wait-
ing for data. (This notation differs from the snooping protocols, in which the superscript A denoted
waiting for a request to appear on the bus.)

TABLE 8.1: MSI Directory Protocol—Cache Controller

158

8.2.5 Protocol Operation

The protocol enables caches to acquire blocks in states S and M and to replace blocks to the directory

in either of these states.

TABLE 8-1. MSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS to

Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SM
AD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data to

Dir/MI
A

send data to Req

and Dir/S

send data

to Req/I

MI
A stall stall stall send data to Req

and Dir/SI
A

send data

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-2. MSI Directory Protocol - Directory Controller.

GetS GetM

PutS-

NotLast PutS-Last

PutM+data from

Owner

PutM+data from

NonOwner Data

I send data to Req,

add Req to Sharers/S

send data to Req,

set Owner to Req/M

send Put-Ack

to Req

send Put-Ack

to Req

send Put-Ack to

Req

S send data to Req,

add Req to Sharers

send data to Req,

send Inv to Sharers,

clear Sharers, set

Owner to Req/M

remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req from

Sharers, send Put-

Ack to Req

M Send Fwd-GetS to

Owner, add Req and

Owner to Sharers,

clear Owner/S
D

Send Fwd-GetM to

Owner, set Owner

to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to mem-

ory, clear Owner,

send Put-Ack to

Req/I

send Put-Ack to

Req

S
D stall stall remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req from

Sharers, send Put-

Ack to Req

copy data to

memory/S

DIRECTORY COHERENCE PROTOCOLS 147

Because these tables can be somewhat daunting at first glance, the next section walks through
some example scenarios.

8.2.5 Protocol Operation
The protocol enables caches to acquire blocks in states S and M and to replace blocks to the direc-
tory in either of these states.

I to S (common case #1)
The cache controller sends a GetS request to the directory and changes the block state from I to
ISD. The directory receives this request and, if the directory is the owner (i.e., no cache currently has
the block in M), the directory responds with a Data message, changes the block’s state to S (if it is
not S already), and adds the requestor to the sharer list. When the Data arrives at the requestor, the
cache controller changes the block’s state to S, completing the transaction.

I to S (common case #2)
The cache controller sends a GetS request to the directory and changes the block state from I to
ISD. If the directory is not the owner (i.e., there is a cache that currently has the block in M), the
directory forwards the request to the owner and changes the block’s state to the transient state SD.
The owner responds to this Fwd-GetS message by sending Data to the requestor and changing the
block’s state to S. The now-previous owner must also send Data to the directory since it is relin-
quishing ownership to the directory, which must have an up-to-date copy of the block. When the

TABLE 8.2: MSI Directory Protocol—Directory Controller

158

8.2.5 Protocol Operation

The protocol enables caches to acquire blocks in states S and M and to replace blocks to the directory

in either of these states.

TABLE 8-1. MSI Directory Protocol - Cache Controller.

l
o

a
d

s
t
o

r
e

r
e
p

l
a

c
e
m

e
n

t

F
w

d
-
G

e
t
S

F
w

d
-
G

e
t
M

I
n

v

P
u

t
-
A

c
k

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

=
0

)

D
a

t
a

 f
r
o

m

D
i
r
 (

a
c
k

>
0

)

D
a

t
a

 f
r
o

m

O
w

n
e
r

I
n

v
-
A

c
k

L
a

s
t
-
I
n

v
-
A

c
k

I send GetS to

Dir/IS
D

send GetM to

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to

Dir/SM
AD

send PutS to

Dir/SI
A

send Inv-Ack

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send

PutM+data to

Dir/MI
A

send data to Req

and Dir/S

send data

to Req/I

MI
A stall stall stall send data to Req

and Dir/SI
A

send data

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-2. MSI Directory Protocol - Directory Controller.

GetS GetM

PutS-

NotLast PutS-Last

PutM+data from

Owner

PutM+data from

NonOwner Data

I send data to Req,

add Req to Sharers/S

send data to Req,

set Owner to Req/M

send Put-Ack

to Req

send Put-Ack

to Req

send Put-Ack to

Req

S send data to Req,

add Req to Sharers

send data to Req,

send Inv to Sharers,

clear Sharers, set

Owner to Req/M

remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req/I

remove Req from

Sharers, send Put-

Ack to Req

M Send Fwd-GetS to

Owner, add Req and

Owner to Sharers,

clear Owner/S
D

Send Fwd-GetM to

Owner, set Owner

to Req

send Put-Ack

to Req

send Put-Ack

to Req

copy data to mem-

ory, clear Owner,

send Put-Ack to

Req/I

send Put-Ack to

Req

S
D stall stall remove Req

from Sharers,

send Put-Ack

to Req

remove Req

from Sharers,

send Put-Ack

to Req

remove Req from

Sharers, send Put-

Ack to Req

copy data to

memory/S

148 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

Data arrives at the requestor, the cache controller changes the block state to S and considers the
transaction complete. When the Data arrives at the directory, the directory copies it to memory,
changes the block state to S, and considers the transaction complete.

I to S (race cases)
The above two I-to-S scenarios represent the common cases, in which there is only one transaction
for the block in progress. Most of the protocol’s complexity derives from having to deal with the
less-common cases of multiple in-progress transactions for a block. For example, a reader may find
it surprising that a cache controller can receive an Invalidation for a block in state ISD. Consider
core C1 that issues a GetS and goes to ISD and another core C2 that issues a GetM for the same
block that arrives at the directory after C1’s GetS. The directory first sends C1 Data in response
to its GetS and then an Invalidation in response to C2’s GetM. Because the Data and Invalidation
travel on separate networks, they can arrive out of order, and thus C1 can receive the Invalidation
before the Data.

I or S to M
The cache controller sends a GetM request to the directory and changes the block’s state from I to
IMAD. In this state, the cache waits for Data and (possibly) Inv-Acks that indicate that other caches
have invalidated their copies of the block in state S. The cache controller knows how many Inv-Acks
to expect, since the Data message contains the AckCount, which may be zero. Figure 8.3 illustrates
the three common-case scenarios of the directory responding to the GetM request. If the directory
is in state I, it simply sends Data with an AckCount of zero and goes to state M. If in state M, the
directory controller forwards the request to the owner and updates the block’s owner; the now-
previous owner responds to the Fwd-GetM request by sending Data with an AckCount of zero.
The last common case occurs when the directory is in state S. The directory responds with Data and
an AckCount equal to the number of sharers, plus it sends Invalidations to each core in the sharer
list. Cache controllers that receive Invalidation messages invalidate their shared copies and send
Inv-Acks to the requestor. When the requestor receives the last Inv-Ack, it transitions to state M.
Note the special Last-Inv-Ack event in Table 8.1, which simplifies the protocol specification.

These common cases neglect some possible races that highlight the concurrency of directory
protocols. For example, core C1 has the cache block in state IMA and receives a Fwd-GetS from
C2’s cache controller. This situation is possible because the directory has already sent Data to C1,
sent Invalidation messages to the sharers, and changed its state to M. When C2’s GetS arrives at the
directory, the directory simply forwards it to the owner, C1. This Fwd-GetS may arrive at C1 before
all of the Inv-Acks arrive at C1. In this situation, our protocol simply stalls and the cache controller

DIRECTORY COHERENCE PROTOCOLS 149

waits for the Inv-Acks. Because Inv-Acks travel on a separate network, they are guaranteed not to
block behind the unprocessed Fwd-GetS.

M to I
To evict a block in state M, the cache controller sends a PutM request that includes the data and
changes the block state to MIA. When the directory receives this PutM, it updates the LLC/mem-
ory, responds with a Put-Ack, and transitions to state I. Until the requestor receives the Put-Ack,
the block’s state remains effectively M and the cache controller must respond to forwarded coher-
ence requests for the block. In the case where the cache controller receives a forwarded coherence
request (Fwd-GetS or Fwd-GetM) between sending the PutM and receiving the Put-Ack, the
cache controller responds to the Fwd-GetS or Fwd-GetM and changes its block state to SIA or
IIA, respectively. These transient states are effectively S and I, respectively, but denote that the cache
controller must wait for a Put-Ack to complete the transition to I.

S to I
Unlike the snooping protocols in the previous chapter, our directory protocols do not silently evict
blocks in state S. Instead, to replace a block in state S, the cache controller sends a PutS request and
changes the block state to SIA. The directory receives this PutS and responds with a Put-Ack. Until
the requestor receives the Put-Ack, the block’s state is effectively S. If the cache controller receives
an Invalidation request after sending the PutS and before receiving the Put-Ack, it changes the
block’s state to IIA. This transient state is effectively I, but it denotes that the cache controller must
wait for a Put-Ack to complete the transaction from S to I.

8.2.6 Protocol Simplifications
This protocol is relatively straightforward and sacrifices some performance to achieve this simplic-
ity. We now discuss two simplifications:

The most significant simplification, other than having only three stable states, is that the
protocol stalls in certain situations. For example, a cache controller stalls when it receives
a forwarded request while in a transient state. A higher performance option, discussed in
Section 8.7.2, would be to process the messages and add more transient states.
A second simplification is that the directory sends Data (and the AckCount) in response to
a cache that is changing a block’s state from S to M. The cache already has valid data and
thus it would be sufficient for the directory to simply send a data-less AckCount. We defer
adding this new type of message until we present the MOSI protocol in Section 8.4.

•

•

DIRECTORY COHERENCE PROTOCOLS 175

to the home. Assume that C2’s snoop response arrives at the home before C1’s snoop response. In
this case, C1’s request is ordered first and the home sends data to C1 and informs C1 that there is a
race. C1 then sends an acknowledgment to the home, and the home subsequently sends a message
to C1 that both completes C1’s transaction and tells C1 to send the block to C2. Handling this race
is somewhat more complicated than in a typical directory protocol in which requests are ordered
when they arrive at the directory.

Source Snoop mode uses more bandwidth than Home Snoop, due to broadcasting, but Source
Snoop’s common case (no race) transaction latency is less. Source Snoop is somewhat similar to
Coherent HyperTransport, but with one key difference. In Coherent HT, a request is unicasted
to the home, and the home broadcasts the request. In Source Snoop, the requestor broadcasts the
request. Source Snoop thus introduces more complexity in resolving races because there is no single
point at which requests can be ordered; Coherent HT uses the home for this purpose.

8.9 DISCuSSION AND THE FuTuRE OF DIRECTORY
PROTOCOLS

Directory protocols have come to dominate the market. Even in small-scale systems, directory
protocols are more common that snooping protocols, largely because they facilitate the use of point-
to-point links in the interconnection network. Furthermore, directory protocols are the only option
for systems requiring scalable cache coherence. Although there are numerous optimizations and
implementation tricks that can mitigate the bottlenecks of snooping, fundamentally none of them
can eliminate these bottlenecks. For systems that need to scale to hundreds or even thousands of
nodes, a directory protocol is the only viable option for coherence. Because of their scalability, we
anticipate that directory protocols will continue their dominance for the foreseeable future.

It is possible, though, that future highly scalable systems will not be coherent or at least not
coherent across the entire system. Perhaps such systems will be partitioned into subsystems that are
coherent, but coherence is not maintained across the subsystems. Or perhaps such systems will fol-
low the lead of supercomputers, like those from Cray, that have either not provided coherence [14]
or have provided coherence but restricted what data can be cached [1].

8.10 REFERENCES
[1] D. Abts, S. Scott, and D. J. Lilja. So Many States, So Little Time: Verifying Memory Co-

herence in the Cray X1. In Proceedings of the International Parallel and Distributed Processing
Symposium, 2003. doi:10.1109/IPDPS.2003.1213087

[2] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy. An Evaluation of Directory
Schemes for Cache Coherence. In Proceedings of the 15th Annual International Symposium
on Computer Architecture, pp. 280–89, May 1988. doi:10.1109/ISCA.1988.5238

http://dx.doi.org/10.1109/IPDPS.2003.1213087
http://dx.doi.org/10.1109/ISCA.1988.5238

176 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

[3] J. K. Archibald and J.-L. Baer. An Economical Solution to the Cache Coherence Prob-
lem. In Proceedings of the 11th Annual International Symposium on Computer Architecture,
pp. 355–62, June 1984. doi:10.1145/800015.808205

[4] J.-L. Baer and W.-H. Wang. On the Inclusion Properties for Multi-Level Cache Hierar-
chies. In Proceedings of the 15th Annual International Symposium on Computer Architecture,
pp. 73–80, May 1988. doi:10.1109/ISCA.1988.5212

[5] P. Conway and B. Hughes. The AMD Opteron Northbridge Architecture. IEEE Micro,
27(2):10–21, March/April 2007. doi:10.1109/MM.2007.43

[6] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache Hierar-
chy and Memory Subsystem of the AMD Opteron Processor. IEEE Micro, 30(2):16–29,
March/April 2010. doi:10.1109/MM.2010.31

[7] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes. In Proceedings of the International
Conference on Parallel Processing, 1990.

[8] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood. Cooperative Shared Memory:
Software and Hardware for Scalable Multiprocessors. ACM Transactions on Computer Sys-
tems, 11(4):300–18, Nov. 1993. doi:10.1145/161541.161544

[9] Intel Corporation. An Introduction to the Intel QuickPath Interconnect. Document Num-
ber 320412-001US, Jan. 2009.

[10] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Pro-
ceedings of the 24th Annual International Symposium on Computer Architecture, pp. 241–51,
June 1997.

[11] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horo-
witz, and M. Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63–79,
Mar. 1992. doi:10.1109/2.121510

[12] R. A. Maddox, G. Singh, and R. J. Safranek. Weaving High Performance Multiprocessor Fab-
ric: Architecture Insights into the Intel QuickPath Interconnect. Intel Press, 2009.

[13] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support Server Consolidation. In Pro-
ceedings of the 34th Annual International Symposium on Computer Architecture, June 2007.

[14] S. L. Scott. Synchronization and Communication in the Cray T3E Multiprocessor. In Pro-
ceedings of the Seventh International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 26–36, Oct. 1996.

• • • •

http://dx.doi.org/10.1145/800015.808205
http://dx.doi.org/10.1109/ISCA.1988.5212
http://dx.doi.org/10.1109/MM.2007.43
http://dx.doi.org/10.1109/MM.2010.31
http://dx.doi.org/10.1145/161541.161544
http://dx.doi.org/10.1109/2.121510

	Blank Page

