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ABSTRACT
Many modern computer systems and most multicore chips (chip multiprocessors) support shared 
memory in hardware. In a shared memory system, each of the processor cores may read and write 
to a single shared address space. For a shared memory machine, the memory consistency model 
defines the architecturally visible behavior of its memory system. Consistency definitions provide 
rules about loads and stores (or memory reads and writes) and how they act upon memory. As part 
of supporting a memory consistency model, many machines also provide cache coherence proto-
cols that ensure that multiple cached copies of data are kept up-to-date. The goal of this primer 
is to provide readers with a basic understanding of consistency and coherence. This understanding 
includes both the issues that must be solved as well as a variety of solutions. We present both high-
level concepts as well as specific, concrete examples from real-world systems.
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In contrast, a directory protocol orders transactions at the directory to ensure that conflicting 
requests are processed by all nodes in per-block order. However, the lack of a total order means that 
a requestor in a directory protocol needs another strategy to determine when its request has been 
serialized and thus when its coherence epoch may safely begin. Because (most) directory protocols 
do not use totally ordered broadcast, there is no global notion of serialization. Rather, a request must 
be individually serialized with respect to all the caches that (may) have a copy of the block. Explicit 
messages are needed to notify the requestor that its request has been serialized by each relevant 
cache. In particular, on a GetM request, each cache controller with a shared (S) copy must send an 
explicit acknowledgment (Ack) message once it has serialized the invalidation message. 

This comparison between directory and snooping protocols highlights the fundamental trade-
off between them. A directory protocol achieves greater scalability (i.e., because it requires less 
bandwidth) at the cost of a level of indirection (i.e., having three steps, instead of two steps, for 
some transactions). This additional level of indirection increases the latency of some coherence 
transactions. 

8.2 BASELINE DIRECTORY SYSTEM
In this section, we present a baseline system with a straightforward, modestly optimized directory 
protocol. This system provides insight into the key features of directory protocols while revealing 
inefficiencies that motivate the features and optimizations presented in subsequent sections of this 
chapter. 

8.2.1  Directory System Model
We illustrate our directory system model in Figure 8.1. Unlike for snooping protocols, the topol-
ogy of the interconnection network is intentionally vague. It could be a mesh, torus, or any other 
topology that the architect wishes to use. One restriction on the interconnection network that we 
assume in this chapter is that it enforces point-to-point ordering. That is, if controller A sends two 
messages to controller B, then the messages arrive at controller B in the same order in which they 
were sent.1 Having point-to-point ordering reduces the complexity of the protocol, and we defer a 
discussion of networks without ordering until Section 8.7.3.

The only differences between this directory system model and the baseline system model in 
Figure 2.1 is that we have added a directory and we have renamed the memory controller to be the 

1 Strictly speaking, we require point-to-point order for only certain types of messages, but this is a detail that we 
defer until Section 8.7.3.
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directory controller. There are many ways of sizing and organizing the directory, and for now we as-
sume the simplest model: for each block in memory, there is a corresponding directory entry. In Sec-
tion 8.6, we examine and compare more practical directory organization options. We also assume 
a monolithic LLC with a single directory controller; in Section 8.7.1, we explain how to distribute 
this functionality across multiple banks of an LLC and multiple directory controllers. 

8.2.2  High-Level Protocol Specification 
The baseline directory protocol has only three stable states: MSI. A block is owned by the directory 
controller unless the block is in a cache in state M. The directory state for each block includes the 
stable coherence state, the identity of the owner (if the block is in state M), and the identities of the 

cache
controller

core

cache
controller

core

interconnection network

LLC/directory
controller

last-level
cache
(LLC)

MULTICORE PROCESSOR CHIP

MAIN MEMORY

private
data (L1)
cache

private
data (L1)
cache

directory

FIguRE 8.1: Directory system model.

2-bit log2 N-bit

state owner  sharer list (one-hot bit vector)

N-bit

FIguRE 8.2: Directory entry for a block in a system with N nodes.
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sharers encoded as a one-hot bit vector (if the block is in state S). We illustrate a directory entry in 
Figure 8.2. In Section 8.5, we will discuss other encodings of directory entries.

Before presenting the detailed specification, we first illustrate a higher level abstraction of the 
protocol in order to understand its fundamental behaviors. In Figure 8.3, we show the transactions 
in which a cache controller issues coherence requests to change permissions from I to S, I or S to 

(1) GetS

(2) Data

(1) GetM

(2) Data[ack=0]

(1) GetS (2) Fwd-GetS

(3) Data

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

(1) PutM+data

(2) Put-Ack

(1) GetM

(2) Data[ack>0]

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I to S. 

Transitions from I or S to M

Transition from M or S to I

(2) Inv

The only sharer might be the requestor,
in which case no Invalidation messages
are sent and the Data message from
the Dir to Req has an AckCount of zero. 

(3) Data

(1) PutS

(2) Put-Ack

I S
Req

SI
S S

Dir Req
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Dir
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Req Dir

MI I M
Req Dir
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S M
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Dir
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Sharer
IS

M I
Req

M I
Dir

S I
Req IS

S S

Dir

FIguRE 8.3: High-Level Description of MSI Directory Protocol. In each transition, the cache con-
troller that requests the transaction is denoted “Req”.
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M, M to I, and S to I. As with the snooping protocols in the last chapter, we specify the directory 
state of a block using a cache-centric notation (e.g., a directory state of M denotes that there exists a 
cache with the block in state M). Note that a cache controller may not silently evict a Shared block; 
that is, there is an explicit PutS request. We defer a discussion of protocols with silent evictions of 
shared blocks, as well as a comparison of silent versus explicit PutS requests, until Section 8.7.4.

Most of the transactions are fairly straightforward, but two transactions merit further dis-
cussion here. The first is the transaction that occurs when a cache is trying to upgrade permissions 
from I or S to M and the directory state is S. The cache controller sends a GetM to the directory, 
and the directory takes two actions. First, it responds to the requestor with a message that includes 
the data and the “AckCount”; the AckCount is the number of current sharers of the block. The 
directory sends the AckCount to the requestor to inform the requestor of how many sharers must 
acknowledge having invalidated their block in response to the GetM. Second, the directory sends 
an Invalidation (Inv) message to all of the current sharers. Each sharer, upon receiving the Invalida-
tion, sends an Invalidation-Ack (Inv-Ack) to the requestor. Once the requestor receives the message 
from the directory and all of the Inv-Ack messages, it completes the transaction. The requestor,  
having received all of the Inv-Ack messages, knows that there are no longer any readers of the block 
and thus it may write to the block without violating coherence. 

The second transaction that merits further discussion occurs when a cache is trying to evict a 
block in state M. In this protocol, we have the cache controller send a PutM message that includes 
the data to the directory. The directory responds with a Put-Ack. If the PutM did not carry the data 
with it, then the protocol would require a third message—a data message from the cache controller 
to the directory with the evicted block that had been in state M—to be sent in a PutM transaction. 
The PutM transaction in this directory protocol differs from what occurred in the snooping proto-
col, in which a PutM did not carry data. 

8.2.3  Avoiding Deadlock
In this protocol, the reception of a message can cause a coherence controller to send another mes-
sage. In general, if event A (e.g., message reception) can cause event B (e.g., message sending) and 
both these events require resource allocation (e.g., network links and buffers), then we must be 
careful to avoid deadlock that could occur if circular resource dependences arise. For example, a 
GetS request can cause the directory controller to issue a Fwd-GetS message; if these messages use 
the same resources (e.g., network links and buffers), then the system can potentially deadlock. In 
Figure 8.4, we illustrate a deadlock in which two coherence controllers C1 and C2 are responding 
to each other’s requests, but the incoming queues are already full of other coherence requests. If the  
queues are FIFO, then the responses cannot pass the requests. Because the queues are full, each con-
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troller stalls trying to send a response. Because the queues are FIFO, the controller cannot switch to 
work on a subsequent request (or get to the response). Thus, the system deadlocks. 

A well-known solution for avoiding deadlock in coherence protocols is to use separate net-
works for each class of message. The networks can be physically separate or logically separate (called 
virtual networks), but the key is avoiding dependences between classes of messages. Figure 8.5 
illustrates a system in which request and response messages travel on separate physical networks. 
Because a response cannot be blocked by another request, it will eventually be consumed by its des-
tination node, breaking the cyclic dependence. 

The directory protocol in this section uses three networks to avoid deadlock. Because a re-
quest can cause a forwarded request and a forwarded request can cause a response, there are three 
message classes that each require their own network. Request messages are GetS, GetM, and PutM. 
Forwarded request messages are Fwd-GetS, Fwd-GetM, Inv(alidation), and Put-Ack. Response 
messages are Data and Inv-Ack. The protocols in this chapter require that the Forwarded Request 
network provides point-to-point ordering; other networks have no ordering constraints nor are 
there any ordering constraints between messages traveling on different networks.

C1

C2
Data response

Data response
full of requests

full of requests

FIguRE 8.4: Deadlock example.

 C1

 C2
Data response

Data response

full of requests

full of requests

FIguRE 8.5: Avoiding deadlock with separate networks.
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We defer a more thorough discussion of deadlock avoidance, including more explanation of 
virtual networks and the exact requirements for avoiding deadlock, until Section 9.3.

8.2.4  Detailed Protocol Specification 
We present the detailed protocol specification, including all transient states, in Tables 8.1 and 8.2. 
Compared to the high-level description in Section 8.2.2, the most significant difference is the tran-
sient states. The coherence controllers must manage the states of blocks that are in the midst of 
coherence transactions, including situations in which a cache controller receives a forwarded request 
from another controller in between sending its coherence request to the directory and receiving all 
of its necessary response messages, including Data and possible Inv-Acks. The cache controllers can 
maintain this state in the miss status handling registers (MSHRs) that cores use to keep track of 
outstanding coherence requests. Notationally, we represent these transient states in the form XYAD, 
where the superscript A denotes waiting for acknowledgments and the superscript D denotes wait-
ing for data. (This notation differs from the snooping protocols, in which the superscript A denoted 
waiting for a request to appear on the bus.) 

TABLE 8.1: MSI Directory Protocol—Cache Controller
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The protocol enables caches to acquire blocks in states S and M and to replace blocks to the directory
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Because these tables can be somewhat daunting at first glance, the next section walks through 
some example scenarios. 

8.2.5  Protocol Operation
The protocol enables caches to acquire blocks in states S and M and to replace blocks to the direc-
tory in either of these states. 

I to S (common case #1)
The cache controller sends a GetS request to the directory and changes the block state from I to 
ISD. The directory receives this request and, if the directory is the owner (i.e., no cache currently has 
the block in M), the directory responds with a Data message, changes the block’s state to S (if it is 
not S already), and adds the requestor to the sharer list. When the Data arrives at the requestor, the 
cache controller changes the block’s state to S, completing the transaction. 

I to S (common case #2)
The cache controller sends a GetS request to the directory and changes the block state from I to 
ISD. If the directory is not the owner (i.e., there is a cache that currently has the block in M), the 
directory forwards the request to the owner and changes the block’s state to the transient state SD. 
The owner responds to this Fwd-GetS message by sending Data to the requestor and changing the 
block’s state to S. The now-previous owner must also send Data to the directory since it is relin-
quishing ownership to the directory, which must have an up-to-date copy of the block. When the 

TABLE 8.2: MSI Directory Protocol—Directory Controller
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I send GetS to 

Dir/IS
D

send GetM to 

Dir/IM
AD

IS
D stall stall stall stall -/S -/S

IM
AD stall stall stall stall stall -/M -/IM

A -/M ack--

IM
A stall stall stall stall stall ack-- -/M

S hit send GetM to 

Dir/SM
AD

send PutS to 

Dir/SI
A

send Inv-Ack 

to Req/I

SM
AD hit stall stall stall stall send Inv-Ack 

to Req/IM
AD

-/M
-/SM

A -/M ack--

SM
A hit stall stall stall stall ack-- -/M

M hit hit send 

PutM+data to 

Dir/MI
A

send data to Req 

and Dir/S

send data 

to Req/I

MI
A stall stall stall send data to Req 

and Dir/SI
A

send data 

to Req/II
A

-/I

SI
A stall stall stall send Inv-Ack 

to Req/II
A

-/I

II
A stall stall stall -/I

TABLE 8-2.  MSI Directory Protocol - Directory Controller. 

GetS GetM

PutS-

NotLast PutS-Last

PutM+data from 

Owner

PutM+data from 

NonOwner Data

I send data to Req, 

add Req to Sharers/S

send data to Req, 

set Owner to Req/M

send Put-Ack 

to Req

send Put-Ack 

to Req

send Put-Ack to 

Req

S send data to Req, 

add Req to Sharers

send data to Req, 

send Inv to Sharers, 

clear Sharers, set 

Owner to Req/M

remove Req 

from Sharers, 

send Put-Ack 

to Req

remove Req 

from Sharers, 

send Put-Ack 

to Req/I

remove Req from 

Sharers, send Put-

Ack to Req

M Send Fwd-GetS to 

Owner, add Req and 

Owner to Sharers, 

clear Owner/S
D

Send Fwd-GetM to 

Owner, set Owner 

to Req

send Put-Ack 

to Req

send Put-Ack 

to Req

copy data to mem-

ory, clear Owner, 

send Put-Ack to 

Req/I

send Put-Ack to 

Req

S
D stall stall remove Req 

from Sharers, 

send Put-Ack 

to Req

remove Req 

from Sharers, 

send Put-Ack 

to Req

remove Req from 

Sharers, send Put-

Ack to Req

copy data to 

memory/S
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Data arrives at the requestor, the cache controller changes the block state to S and considers the 
transaction complete. When the Data arrives at the directory, the directory copies it to memory, 
changes the block state to S, and considers the transaction complete. 

I to S (race cases)
The above two I-to-S scenarios represent the common cases, in which there is only one transaction 
for the block in progress. Most of the protocol’s complexity derives from having to deal with the 
less-common cases of multiple in-progress transactions for a block. For example, a reader may find 
it surprising that a cache controller can receive an Invalidation for a block in state ISD. Consider 
core C1 that issues a GetS and goes to ISD and another core C2 that issues a GetM for the same 
block that arrives at the directory after C1’s GetS. The directory first sends C1 Data in response 
to its GetS and then an Invalidation in response to C2’s GetM. Because the Data and Invalidation 
travel on separate networks, they can arrive out of order, and thus C1 can receive the Invalidation 
before the Data.

I or S to M
The cache controller sends a GetM request to the directory and changes the block’s state from I to 
IMAD. In this state, the cache waits for Data and (possibly) Inv-Acks that indicate that other caches 
have invalidated their copies of the block in state S. The cache controller knows how many Inv-Acks 
to expect, since the Data message contains the AckCount, which may be zero. Figure 8.3 illustrates 
the three common-case scenarios of the directory responding to the GetM request. If the directory 
is in state I, it simply sends Data with an AckCount of zero and goes to state M. If in state M, the 
directory controller forwards the request to the owner and updates the block’s owner; the now- 
previous owner responds to the Fwd-GetM request by sending Data with an AckCount of zero. 
The last common case occurs when the directory is in state S. The directory responds with Data and 
an AckCount equal to the number of sharers, plus it sends Invalidations to each core in the sharer 
list. Cache controllers that receive Invalidation messages invalidate their shared copies and send 
Inv-Acks to the requestor. When the requestor receives the last Inv-Ack, it transitions to state M.  
Note the special Last-Inv-Ack event in Table 8.1, which simplifies the protocol specification.

These common cases neglect some possible races that highlight the concurrency of directory 
protocols. For example, core C1 has the cache block in state IMA and receives a Fwd-GetS from 
C2’s cache controller. This situation is possible because the directory has already sent Data to C1, 
sent Invalidation messages to the sharers, and changed its state to M. When C2’s GetS arrives at the 
directory, the directory simply forwards it to the owner, C1. This Fwd-GetS may arrive at C1 before 
all of the Inv-Acks arrive at C1. In this situation, our protocol simply stalls and the cache controller 
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waits for the Inv-Acks. Because Inv-Acks travel on a separate network, they are guaranteed not to 
block behind the unprocessed Fwd-GetS. 

M to I
To evict a block in state M, the cache controller sends a PutM request that includes the data and 
changes the block state to MIA. When the directory receives this PutM, it updates the LLC/mem-
ory, responds with a Put-Ack, and transitions to state I. Until the requestor receives the Put-Ack, 
the block’s state remains effectively M and the cache controller must respond to forwarded coher-
ence requests for the block. In the case where the cache controller receives a forwarded coherence 
request (Fwd-GetS or Fwd-GetM) between sending the PutM and receiving the Put-Ack, the 
cache controller responds to the Fwd-GetS or Fwd-GetM and changes its block state to SIA or 
IIA, respectively. These transient states are effectively S and I, respectively, but denote that the cache 
controller must wait for a Put-Ack to complete the transition to I.

S to I
Unlike the snooping protocols in the previous chapter, our directory protocols do not silently evict 
blocks in state S. Instead, to replace a block in state S, the cache controller sends a PutS request and 
changes the block state to SIA. The directory receives this PutS and responds with a Put-Ack. Until 
the requestor receives the Put-Ack, the block’s state is effectively S. If the cache controller receives 
an Invalidation request after sending the PutS and before receiving the Put-Ack, it changes the 
block’s state to IIA. This transient state is effectively I, but it denotes that the cache controller must 
wait for a Put-Ack to complete the transaction from S to I.

8.2.6  Protocol Simplifications
This protocol is relatively straightforward and sacrifices some performance to achieve this simplic-
ity. We now discuss two simplifications: 

The most significant simplification, other than having only three stable states, is that the 
protocol stalls in certain situations. For example, a cache controller stalls when it receives 
a forwarded request while in a transient state. A higher performance option, discussed in 
Section 8.7.2, would be to process the messages and add more transient states.
A second simplification is that the directory sends Data (and the AckCount) in response to 
a cache that is changing a block’s state from S to M. The cache already has valid data and 
thus it would be sufficient for the directory to simply send a data-less AckCount. We defer 
adding this new type of message until we present the MOSI protocol in Section 8.4. 

•

•
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to the home. Assume that C2’s snoop response arrives at the home before C1’s snoop response. In 
this case, C1’s request is ordered first and the home sends data to C1 and informs C1 that there is a 
race. C1 then sends an acknowledgment to the home, and the home subsequently sends a message 
to C1 that both completes C1’s transaction and tells C1 to send the block to C2. Handling this race 
is somewhat more complicated than in a typical directory protocol in which requests are ordered 
when they arrive at the directory. 

Source Snoop mode uses more bandwidth than Home Snoop, due to broadcasting, but Source 
Snoop’s common case (no race) transaction latency is less. Source Snoop is somewhat similar to  
Coherent HyperTransport, but with one key difference. In Coherent HT, a request is unicasted 
to the home, and the home broadcasts the request. In Source Snoop, the requestor broadcasts the 
request. Source Snoop thus introduces more complexity in resolving races because there is no single 
point at which requests can be ordered; Coherent HT uses the home for this purpose. 

8.9 DISCuSSION AND THE FuTuRE OF DIRECTORY  
PROTOCOLS

Directory protocols have come to dominate the market. Even in small-scale systems, directory 
protocols are more common that snooping protocols, largely because they facilitate the use of point-
to-point links in the interconnection network. Furthermore, directory protocols are the only option 
for systems requiring scalable cache coherence. Although there are numerous optimizations and 
implementation tricks that can mitigate the bottlenecks of snooping, fundamentally none of them 
can eliminate these bottlenecks. For systems that need to scale to hundreds or even thousands of 
nodes, a directory protocol is the only viable option for coherence. Because of their scalability, we 
anticipate that directory protocols will continue their dominance for the foreseeable future.

It is possible, though, that future highly scalable systems will not be coherent or at least not 
coherent across the entire system. Perhaps such systems will be partitioned into subsystems that are 
coherent, but coherence is not maintained across the subsystems. Or perhaps such systems will fol-
low the lead of supercomputers, like those from Cray, that have either not provided coherence [14] 
or have provided coherence but restricted what data can be cached [1].
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