
The gem5 Tutorial
@HPCA 2024

Presentation by Bobby R. Bruce

Materials designed for gem5 v23.1

A little about me

Started in Sep. 2019

Started as a Postdoc

In Jan 2021 I moved up to being Project
Scientist

Spent almost all that time working on the gem5
project.

So, am I an expert in
gem5?

What is gem5?

The gem5 architecture simulator provides a platform for
evaluating computer systems by modeling the behavior of the
underlying hardware. It enables researchers to simulate the
performance and behavior of complex computer systems,
including the CPU, memory system, and interconnects. This makes
it possible to study the performance of different
microarchitectural and architectural choices, as well as the effects
of different workloads, without having to build and test real
systems.

By ChatGPT

What are we going to cover today?
� A short history of gem5.

� Getting gem5 setup on your system: Compilation, etc..

� Using prebuilt systems.

� An overview of event-based simulation and gem5’s software
structure

� Simulator outputs and how to interpret it.

� Creating a system using stdlib components.

� Statistical outputs .

� SE-mode and FS-mode simulations.

� Checkpoints, lower-fidelity components, KVM mode, and Sampling

� Creating your own SimObject.

� Creating your own stdlib component.

� Gem5 Resources.

� How to continue to gem5.

Please feel free to
speak up!

Discussion is
good!

(I don’t have all
the answers

though!)

A little bit of history

The m5 Simulator
“A tool for simulating
systems”

(~2002)

The GEMS simulator
Provided a detailed memory system.

(~2000)
(2011)

A little bit of history

Total Commit*: 21,000

Unique Contributions*: 421

* As of v23.1

A true public infrastructure project

Open Source

Free (like
beer)

Massively
Collaborative

Who uses gem5, and why?

Education Academic
Research

Industrial
R&D

Education

Problem: Students need
to learn to design

hardware but don’t
have a multi-billion-

dollar factory

Academic Research

Academic Researchers

We surveyed the top architecture conferences and
found:

- 70% of all computer architecture research utilizes
simulation.

- The gem5 simulator is by-far the most popular.

Room for improvement: Most users still “roll their own”
simulation software. Only 20% use gem5 directly. We

want to go above 50% by 2027.

Industry

?
Really, we don’t know exactly. We don’t
track users and industrial users seldom
make themselves known.

Industry

Big players we know use it

Let’s hit the ground running

This example will show:

1. How someone obtains gem5.
2. How you build it.
3. Running a very basic ”Hello World” simulation.

• Getting and compiling gem5 is often the hardest
part…

• There’s a lot of complicated things happening behind
the scenes. I will explain them later.

Typical Downloading

> git clone https://github.com/gem5/gem5

> cd gem5

stable: The default branch for gem5. Updated at stable releases. Currently v23.1.
develop: The branch in which new features, improvements, etc. are added regularly for the next release.

In this tutorial we’re going to use codes paces with a repo which includes some example materials.
Though all the gem5 code is v23.1.

DON’T DO
THIS!

Using CodeSpaces

Step 1: Go to https://github.com/gem5-hpca-2024/gem5

Using CodeSpaces

Step 2: Click “Code” -> ”Create codespace on stable”

Some may be given the
option to open this in a local
instance of Visual Studio. This
is fine. If you receive no
option, you’ll run it through
the browser. The interface is
identical.

Using CodeSpaces

Step 3: Wait for your environment to load. Then you’re done

Building gem5

> scons build/ALL/gem5.opt –j`nproc`

Let’s start by writing a simulation configuration

Open “materials/01-basic.py”. You’ll see the above
already prepared for you. Do your work here.

Let’s be lazy and use a prebuild board

The X86DemoBoard has the
following properties:
• Single Channel DDR3, 2GB

Memory.
• A 4 core 3GHz processor

(using gem5’s ‘timing’
model).

• A MESI Two Level Cache
Hierarchy, with 32kB data
and instruction case and a
1MB L2 Cache.

• Will be run as a Full-System
simulation.

Source:
“src/python/gem5/prebuilt/demo/x86_demo_board.py”

Let’s load some software!

(And be lazy again… let’s use
something pre-made)

”obtain_resource” downloads the files needed to run the specified
workload. In this case the “x86-ubuntu-18.04-boot” workload:
1. Boots 18.04 with linux 5.4.49
2. Upon boot will exit the simulation.

https://resources.gem5.org/resources/x86-ubuntu-18.04-
boot?version=2.0.0

https://resources.gem5.org/resources/x86-ubuntu-18.04-boot?version=2.0.0
https://resources.gem5.org/resources/x86-ubuntu-18.04-boot?version=2.0.0

The gem5 Resources Web portal

https://resources.gem5.org/resources/x86-ubuntu-18.04-
boot?version=2.0.0

https://resources.gem5.org/resources/x86-ubuntu-18.04-boot?version=2.0.0
https://resources.gem5.org/resources/x86-ubuntu-18.04-boot?version=2.0.0

Back to the configuration: Put the board in the
simulator

Note: We’re setting “max_ticks” here to stop the simulation after
10 billion simulation ticks. This is just so our simulation stops in a
reasonable time `simuator.run()` will have it run to completion.

There! We’re done!

The completed configuration can be found in “materials-completed/01-basic.py”

Run the simulation

> ./build/ALL/gem5.opt materials/01-basic.py

Let’s check other outputs here…

- m5out/
----- board.pc.com_1.device

The terminal output
of the simulated
system.

Let’s check other outputs here…

- m5out/
----- board.pc.com_1.device
----- config.{ini/json}

A record of the
simulated system in
both JSON and INI
format.

Let’s check other outputs here…

- m5out/
----- board.pc.com_1.device
----- config.{ini/json}
----- stats.txt

The gem5
statistic output

Wait, did we do?

Created a
simulation using
a pre-built board

Obtained the
workload we
needed from

gem5 Resources

Learned how to
clone gem5 and

compiled it

Checked the
gem5 output

files

We…

Set the max tick
for the program

execution

Ok, but how does it all work?

Modern systems are very
complex, and the design of
gem5 simulations reflects this.

However, at its core, the
simulator builds on a relatively
simple model.

Nomenclature

Host: the actual hardware you’re using

Running things directly on the hardware:
 Native execution

Guest: Code running on top of “fake”
hardware
 OS in virtual machine is guest OS
 Running “on top of” hypervisor
 Hypervisor is emulating hardware

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Virtual machines

Hypervisor

Guest

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host
 Exposes hardware to the guest
Guest: Code running on simulated hardware
 OS running on gem5 is guest OS
 gem5 is simulating hardware

Simulator’s code: Runs natively
 executes/emulates the guest code
Guest’s code: (or benchmark, workload, etc.)
 Runs on gem5, not on the host.

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Simulation

gem5/Simulator

Guest

Workload

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host
 Exposes hardware to the guest
Simulator’s performance:
 Time to run the simulation on host
 Wallclock time as you perceive it

Simulated performance:
 Time predicted by the simulator
 Time for guest code to run on
simulator

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

gem5/Simulator

Guest

Simulation Workload

At its core: it’s a discrete event simulator

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

Event - 51

At its core: it’s a discrete event simulator

Discrete event simulation example

TIME

Fetch first inst

Send req to
cache

Miss in L1, send
to DRAM Put in read Q

L1 tag latency To DRAM latency DRAM read latency

Get data from
DRAM

Cache recvs
data

Processor decodes
instruction

Processor executes
instruction

Fetch
next inst

Response latency One cycle

Discrete event simulation

"Time" needs a unit
In gem5, we use a unit called "Tick"

Need to convert a simulation "tick" to user-understandable time
E.g., seconds

This is the global simulation tick rate
Usually this is 1 ps per tick or 1012 ticks per second

Ok, but how do you schedule these events?

SimObject 1. Schedule events and
process events.

2. Talk to other SimObjects.

While some are incredibly
complex, at their core they only
do two things:

This is great, but it takes a lot to get things done

gem5 Config file

This allows for maximum flexibility but
can mean creating 100s of lines of
Python to create even a basic
simulation.

What is the standard library for?

gem5 Config file

The stdlib is a library which allows for users to quickly create systems with pre-built
components.

The stdlib's module architecture allows for components (e.g. a memory system or
a cache hierarchy setup) to be quickly swapped in and out without radical

redesign.

stdlib

The stdlib modular metaphor

Processor

Board

Memory Cache Hierarchy

SingleChannelDDR
3_1600

SingleChannelDDR
4_2400

...

Simple Processor

SwitchableProcessor

...

No Cache

PrivateL1PrivateL2

MesiTwoLevel

...

Let’s build using components!

Open “materials/02-components.py” You’ll see the
above already prepared for you.

Let’s choose a cache hierarchy and memory
system

And a processor!

The SimpleSwitchingProcessor allows for different types of
cores to be swapped during a simulation with
`processor.switch()`.

This can be useful when wanting to switch to and from a
detailed form of simulation. More on this alter.

Then let’s plug them into a board

We add the components to the board,
in this case an `X86Board`.

Load in our workload to the board

The `set_kernel_disk_workload` function
accepts a kernel binary resources and a

disk images resources.

In addition, here we are passing a
command via the `readfile_contents`

parameter which will run after the boot is
complete.

The `m5 exit` command will exit the
simulation loop.

Simulated System

Run the simulator

Boot OS `readfile_contents`
executed

1st `m5 exit`

`echo ”This is…”` `sleep 1`

2nd `m5 exit`End of
Simulation

Run the simulator

> ./build/ALL/gem5.opt materials/02-components.py

A completed version of the configuration can be
found in “materials-completed/02-01-components-

initial.py”

We can do better…

Here we can specify exactly what to do
on each exit event type via Python
generators.

The Simulator had default behavior for
these events, but they can be
overridden.

• ExitEvent.EXIT
• ExitEvent.CHECKPOINT
• ExitEvent.FAIL
• ExitEvent.SWITCHCPU
• ExitEvent.WORKBEGIN
• ExitEvent.WORKEND
• ExitEvent.USER_INTERRUPT
• ExitEvent.MAX_TICK

To run

> ./build/ALL/gem5.opt materials/02-components.py

This will take a while to run but you can
see the terminal output in “m5out”

while this is running.

Cntr+C to exit the simulation.

What did we just do?

A “full-system”
simulation

Created and
handled exit

events

Switch CPU
fidelity at a

chosen point

Dumped
Statistics for our

chosen ROI

The
simulations so

far are so
slow…

gem5 is slloooww

Simulating
1 Second

>> 100k
seconds on the
host

(Not our fault: It’s the natural of simulation)

Fortunately, there are some work arounds
Si

m
ul

at
io

n
Fi

de
lit

y

Simulation Time

Key idea: You don’t
need to simulate

everything
perfectly, or at all.

Simulations can always be made faster by simulating
less

This isn’t always a bad thing… a lot of a simulation is
of no interest to us

Kernel Boot Wider OS
setup

Benchmark
application load ROI Finish and cleanup

🥱🥱🥱

👀 👀

Some techniques we provide

CPU Models KVM Mode

Checkpoints

Sampling:
Simpoints

and
Loopoints

SE Mode

Host System

SE mode vs FS mode

Full-System Simulation

Hardware

OS

Application

Host System

Syscall Emulation Simulation

Hardware

OS

Application
SE Mode relays
application syscalls
to host OS. This
means we don’t
need to simulate an
OS for applications
to run

In addition, we can
access host
resources such as
files of libraries to
dynamically link in.

SE mode example

SE Mode

A pre-made script which uses SE-mode can be
found in “materials/03-se-mode.py”.

It’s very similar to the scripts you’ve created thus
far but uses the `SimpleBoard`.

Let’s try to understand the script first before
demoing SE Mode. It includes some features
we’ve yet to explain.

Suites (and argparse)

The require function: Making sure we built the right
thing

SE mode

> ./build/ALL/gem5.opt materials/03-se-mode.py \

 arm-matrix-multiply-run

This will take about a minute to run.

This would’ve taken hours to run in FS, but in SE ignore the
entire OS simulation

You can try other CLI options too.

FS and SE mode: Common Fit falls

“FS mode takes too long so I just switched over to SE mode”

You must understand what you’re simulating and whether
it’ll impact results.

”gem5 Won’t let me run a binary with elevated instructions”

SE-mode will only allow you to simulate user-space instructions.
We can’t just pass elevated instructu

”I can’t run my program in SE-Mode because a syscall isn’t
implemented correctly”

We’d love to have all the syscalls implemented but it’s too much work.

FS and SE mode

FS mode does
everything SE mode

does, and more!
When in doubt, or
struggling with SE,

use FS mode.

CPU Models

CPU Models

Memory Accesses
How memory are simulated

• Timing
• Atomic

CPU Design
The type of CPU design. The simpler the faster.

• O3
• Pipeline
• Simple

CPU Models: Memory Accesses

CPU Models

Atomic Accesses

When a memory is accessed, the CPU gets the data
instantly and latency is simply estimated for statistics. I.e.,
everything is happening in one function call from the CPU,
in a single event in the Queue.

Low fidelity but fast!

Only suitable if you don’t care about memory access data
(kind of rare for computer architects…).

CPU Models: Memory Accesses

CPU Models

Timing Accesses

Memory requests are responded to by
scheduling events in the future in the event
queue.

I.e., a request is made by the CPU to memory
and the response is scheduled in the event
queue.

Low but more accurate.

CPU Models: Simple

CPU Models
Simple CPU

A basic in-order CPU model. Due to its relative
simplicity, it is relatively easy to simulate
compare to other CPU model types.

CPU Models: Simple

CPU Models

Minor CPU

A CPU model for simulating pipelines. The Minor
CPU is highly configurable.

Let’s play around with a few different CPU models

Go back to the “materials/03-se-mode.py script.

Try changing the `cpu_type` field of the `SimpleProcessor` and see how it impacts
simulation execution time (see ‘host seconds; in “m5out/stats.txt” for this information

A Simple CPU using the Timing memory access model.

A Simple CPU using the Atomic memory access model.

A O3 CPU using the Timing memory access model.

What I observed with matrix-multiply

0

20

40

60

80

100

120

Seconds taken to complete execution of Matrix-Multiply

Atomic Timing O3

KVM Mode: The other special CPU Type

Due to GitHub Codespace restrictions,
we cannot use this special CPU type.

If you later wish to check your host
system’s compatibility and how to
setup KVM see:
https://www.gem5.org/documentatio
n/general_docs/using_kvm/

The KVM CPU utilizes the host systems Kernel Virtual Machine to
utilize the host hardware to execute instructions.

The host must have KVM enabled and be of the same ISA type as
that being emulated.

KVM always runs with Atomic memory accesses. It is simulating
almost nothing and is therefore very fast.

https://www.gem5.org/documentation/general_docs/using_kvm/
https://www.gem5.org/documentation/general_docs/using_kvm/

Checkpointing

Checkpointing allows for a simulation to save its state then load to that state later.

This is useful in cases where you want to quickly jump to points in .

This is literally like a checkpoint/save in a video game.

The simulated system that restores the checkpoint can differ from that which created it.
There are some restrictions:

1. You can’t restore to a system with less memory.
2. You can’t restore with a different workload.
3. Ruby Cache Hierarchy’s are wiped. Ergo you start with a clean cache from restore.

Saving a Checkpoint

Open “materials/04-01-saving-a-checkpoint.py”.

Let’s first go through the file to understand
what this configuration is doing.

Saving a Checkpoint

This is a function definition in “src/gem5/python/simulate/simulator.py”. Using
this info, append to the configuration file to make it create a checkpoint after

the first `m5 exit`.

When done, run the script. It should take about 20 minutes.

Saving a Checkpoint

Don’t worry, I’ve created
one for you: “materials-

completed/checkpoints/04
-01-saved-checkpoint”

Restoring from a checkpoint

Open “materials/04-02-saving-a-checkpoint.py”.

Again, let’s go through this file. Note
the differences.

This file is complete. Run it and see
the restore in action.

Sampling!

Sampling

Right now, a bit
experimental.

Advanced users
only!

Sampling is only simulating small parts of an
execution then extrapolating data from there.

SimPoint and Looppoint are partially
integrated into gem5.

There are some toy examples in
“configs/example/gem5_library/looppoints”.

You can now

Setup
simulations

using the gem5
stdlib

Use Exit Events
to return data

and alter
parameters at
specific points

in time

Reduce your
simulation

time with a set
of tricks to
lower and
increase
fidelity

Understand
Event-based
Simulation

Obtain,
compile, and

run gem5

Understand SE
and FS mode

What’s next?

While we strive to provide a tool which allows for easy simulation of typical
hardware setups via modular connections between components provided by the
project…

Research and development requires creation of something new. We must therefore
know how to create new components, SimObjects, and incorporate them into our
designs.

We provide you with 99% of a simulated system so you can fuss over that 1% that’s
unique to your project

SimObjects at a glance

Model
 C++ code in src/

Parameters
 Python code in src/
 In SimObject declaration file

Instance or configuration
 A particular choice for the parameters
 In standard library, your extensions, or python runscript

Adding a new SimObject

Step 1: Create a Python class (SimObject description file)

Step 2: Implement the C++

Step 3: Register the SimObject and C++ file

Step 4: (Re-)build gem5

Step 5: Create a config script

Adding a new SimObject

Create a new directory in “src” called ”simobject-

example”.

All the files will go there.

Step 1: Create a Python class

| from m5.params import *
| from m5.SimObject import SimObject
|
| class HelloObject(SimObject):
| type = ”HelloObject"
| cxx_header = ”simobject-example/hello_object.hh"
| cxx_class = "gem5::HelloObject" Import the objects we need

m5.params: Things like
MemorySize, Int, etc.

type: The C++ class name cxx_header: The filename for the
C++ header file

HelloObject.py

cxx_class: The fully qualified
C++ class name

Step 2: Implement the C++

| #include "params/HelloObject.hh"
| #include "sim/sim_object.hh”
| namespace gem5{
| class HelloObject : public SimObject
| {
| public:
| HelloObject(const HelloObjectParams &p);
| };
| } // namespace gem5

hello_object.hh params/*.hh generated
automatically. Comes from
Python SimObject definition

Constructor has one parameter,
the generated params object.
Must be a const reference

Step 2: Implement the C++

#include ”simobject-example/hello_object.hh”
#include <iostream>
Namespace gem5 {
HelloObject::HelloObject(const HelloObjectParams ¶ms)
 : SimObject(params)
{
 std::cout << "Hello World! From a SimObject!" << std::endl;
}
} //

hello_object.cc

Step 3: Register the SimObject and C++ file

| Import('*')
| SimObject(HelloObject.py', sim_objects=[HelloObject'])
| Source(hello_object.cc')

SConscript
Import: SConscript is just
Python… but weird.

SimObject(): Says that this
Python file contains a SimObject.
Note: you can put pretty much
any Python in here

Source(): Tell scons to compile
this file (e.g., with g++).

sim_objects: The SimObjects
declared in the file (could be
more than 1)

Step 4: (Re-)build gem5

> scons build/ALL/gem5.opt –j`nproc`

> build/ALL/gem5.opt run-hello.py

...

Hello world! From a SimObject!

...

Step 5: Create a config script
| import m5
| from m5.objects import *
| root = Root(full_system=False)
| root.hello = HelloObject()
|
| m5.instantiate()
| exit_event = m5.simulate()
| print(f"Exiting @ tick {m5.curTick()} because"
| "{exit_event.getCause()}")

Instantiate the new object that
you created in the config file
(e.g., simple.py)

All simulations
require a Root

Instantiate all the SimObjects
(create the C++ instances)

Simulate the system as
configured!

Adding Parameters and events to the SimObject

Add this to “HelloObject.py”.

This declares the parameters of
the SimObject.

Adding Parameters and events to the SimObject

Update the “hello_object.hh” with the
parameters and the event

variables/functions.

The “processEvent” function will handle
the event.

The “event” variable will wrap the
“processEvent’ function.

The other variables store the stage of
the object and the variables

Adding Parameters and events to the SimObject

Now we updated ”hello_object.cc” to set the variables and
functions.

We’ve also changed the `std::cout` to output the Object name.

Adding Parameters and events to the SimObject

Implement the `startup` and `processEvent` functions in ”hello_object.cc”

The `startup` schedules the event before the simulation starts with ‘latency`.

The `processEvent` will continue to reschedule the event `timeLeft` times.

Adding Parameters and events to the SimObject

Because `time_to_wait` does not have a default value we must
set it in the config script.

Add this to your run script.

Adding Parameters and events to the SimObject

scons build/ALL/gem5.opt –j`nproc`

./build/ALL/gem5.opt <your run script>

After, why don’t you try running changing the default
`number_of_fires` parameter to something more interesting.

A little more to do in your own time

https://www.gem5.org/documentation/learning_gem5/part2/parameters/
contains an additional part of this tutorial which involves adding another
SimObject: “GoodbyeObject” which schedules a Goodbye event when the

HelloObject events cease scheduling

If your interested in SimObjects and creating your own this is worth doing..

https://www.gem5.org/documentation/learning_gem5/part2/parameters/

Let’s see how SimObject objects are configured,
utilized and create new components

Let’s do it
live! Try to

follow along!

(an example can be found in “materials-completed/07-our-silly-cache”)

gem5 Resources

A resources is something that runs on a simulated system.

While the underlying simulated hardware remains the same, what resources are used in the
simulation impact what the simulated system runs and how the simulator runs it.

Typically, this is software, disk images, or data to be loaded into the simulated system’s
memory/storage.

It may also be things like “checkpoints” for the simulation to use, or sampling data.

They are files, directories, programs, and generally thing that doesn’t impact a simulated
configuration but does impact it’s running.

Contributing to gem5

You’ve learned a thing or two about gem5, why not work to make it better?

Our Strategy

Learn

Use

Develop

Contribute

Improve

More interest

Why should I contribute to gem5?

You’re Nice!
- You’ve found a bug and have a fix.
- You’ve developed something useful and want

to share it.

Fame!

- Looks good on your CV.
- Companies contribute to gem5 all the time.Fortune!

- Get yourself known in the project.
- Good PR for your research to have it

incorporated in gem5.

“I’m scared”

Understandable…

Very few patches get in straight away. Most
patches are only accepted after requests for

changes.

We try our best to keep feedback as
constructive as possible (don’t take it

personally!).

The purpose of this session is to make it less
scary!

What can I contribute?

Your own changes (bug fixes are very welcome!)

Check the GitHub Issue Tracker:
https://github.com/gem5/gem5/issues

https://github.com/gem5/gem5/issues

What can I contribute?

Some stuff we’re always needing more of:

Tests
Incorporating Syscalls for SE mode

Unimplemented ISA instructions/extensions
Useful stdlib components

Useful gem5 resources
Updating documentation on the gem5 website

Even fixing typos is helpful!

What can’t I contribute?

3,.It’s dangerous

You’ve changed a lot of code and
haven’t proven you’ve not yet broken

anything. Tests are required at a
minimum.

1. Anything that’ll burden the
community with too much

maintenance overhead.

Yeah, you’ve developed something nice
for us, but it’s big and complex: are you

going to stick around to help us
maintain it? Is it engineered for that to

be easy?

2. Something overly niche and lacks general
applicability

The component you made to carry out your
research may be interesting to you but

adding it to the codebase may just be bloat
to most users: Consider sharing such things

on your own git repos.

3. It doesn’t confirm to our standards

The code appears fine, but you’ve not
conformed to our style guide.

Forking and cloning

Step 1: Go to https://github.com/gem5/gem5

Step 2: Fork the repo

Step 3: Clone the forked repo

Where do I make changes?

>git switch develop

>git switch –c my-change

Making changes: CPP

Full style guide here:
https://www.gem5.org/documentation/general_docs/development/coding_style/

High-level overview: https://www.gem5.org/contributing#making-modifications

Doxygen is highly recommended

http://doxygen.gem5.org

https://www.gem5.org/documentation/general_docs/development/coding_style/
https://www.gem5.org/contributing
http://doxygen.gem5.org/

Making changes: Python

> pip install black

> black <python file>

For variable/method/etc. Naming conventions please follow the PEP 8 naming
convention recommendations: https://peps.python.org/pep-0008/#naming-

conventions

While we try to enforce naming conventions across the gem5 project, we are aware
there are instances where they are not.

In such cases please follow the convention of the code you are modifying.

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

The biggest gotchas!

• Whitespace at the end of a line.
• Indentation not 4 space characters (please, no tabs)
• Lines too long (for CPP, no more than 79 characters!)

When in doubt, follow the style around you!

We have a style checker which should stop you
committing if you’ve done something wrong, but it’s

not perfect and can be side-stepped.

Ensure pre-commit is installed

> ./util/pre-commit-install.sh

Pre-commit ensures when you are about to commit a change a
series of checks are run on your code to ensure it conforms to

our style guide

Using git

> git add <files to add>

> git commit

Commit message rules

We have some unique rules for gem5:

1. The header must lead with tags (see MAINTAINERS.yaml for a list of tags).
2. Headers should be clear, short descriptions of what a patch will do.
3. Headers should be no longer than 65 characters
4. A blank line separates the header and the patch description.
5. Descriptions can span multiple paragraphs, but lines should not exceed 72

characters (this is lax rule, it’s acceptable to exceed this if you’re quoting
code, or including a URL).

View the Git Log

> git log

Example commit message

How do I push?

> git push

This pushes to your forked repo

Create a pull request

Select the branch you just pushed

Create a pull request

Click “Open Pull Request” under “Contribute”

Create a pull request

Fill out the form. Of note: Change the base branch to “develop”.
Once filled, click “Create Pull Request”

Pull Request waiting for testing and review

https://github.com/gem5/gem5/pulls

https://github.com/gem5/gem5/pulls

PR Review Process

PR Created

Tests Pass? Update change

Wait for Tests to
complete

Yes

PR Merged

PR is
reviewed by
community

member.
Suggestions made

Yes

No

Maintainer
Decides if to

merge Change Approve

Refuses (rare)

To make
changes just
push to your
forked repo

branch!

Testing overview

Compiler Tests (Run Weekly)

Daily Tests

Weekly Tests

CI Tests

Ex
ec

ut
io

n
tim

e

Badges are shown on the repo main page:
https://github.com/gem5/gem5?tab=readme-ov-file#testing-status

The most direct are the “CI Tests”,
you cannot merge your change
into develop without these passing
on your PR.

The rest run either daily or weekly.
It is therefore possible your PR
breaks gem5 but there’s a delay in
us finding out (so keep an eye on
these tests).

https://github.com/gem5/gem5?tab=readme-ov-file

What about the other gem5 repos?

gem5 Resources

https://github.com/gem5/gem5-
resources

The Sources for the gem5
Resources

Build atop “stable” to make changes
for the current release.

Built atop “develop” to make changes
for the upcoming release.

gem5 Website

https://github.com/gem5/website

The www.gem5.org sources.

Changes made to the “stable” branch are
live.

Changes made to “develop” will be
merged into stable on the next gem5

release.

Neither of these are held up to the
same standards as the gem5 repo
but changes to them are reviewed.

https://github.com/gem5/gem5-resources
https://github.com/gem5/gem5-resources
https://github.com/gem5/website
http://www.gem5.org/

Some useful resources

https://www.gem5.org/contributing

CONTRIBUTING.md in the gem5 directory

Sometimes using git is the biggest hurdle:

• https://git-scm.com/book/en/v2 : The git book
• https://dev.to/milu_franz/git-explained-the-basics-igc : I think this is a good tutorial but is very

GitHub-centric (we don't use GitHub for gem5). Still, going through it would be beneficial.
• https://wiki.spheredev.org/index.php/Git_for_the_lazy : Does a quick run through of the basic

Git commands. Can be good for reference.
• http://marklodato.github.io/visual-git-guide/index-en.html: A bit more complex but tries to

introduce the git data structures involved in git
• https://towardsdatascience.com/git-help-all-2d0bb0c31483: Another resource outlining both

the commands and explaining how git works.

https://www.gem5.org/contributing
https://git-scm.com/book/en/v2
https://dev.to/milu_franz/git-explained-the-basics-igc
https://wiki.spheredev.org/index.php/Git_for_the_lazy
http://marklodato.github.io/visual-git-guide/index-en.html
https://towardsdatascience.com/git-help-all-2d0bb0c31483

Caveats
gem5 is a tool, not a panacea

Most models are not validated against
“real” hardware

“All models are wrong but some are useful”

See “Architectural Simulators Considered
Harmful”by Nowatzki et al. (2015).

There are bugs!

Bobby’s Advice
Learn git. By that, I mean beyond “git add” and “git commit”.

Get comfortable with Object Oriented design. The gem5 codebase depends heavily on it. Learn it and
incorporate it in your work.

Don’t modify, extend! Hacking what’s already there will cause problems. Create new SimObjects, components,
scripts as needed.

Understand the data you need before trying to make gem5 go faster. SE mode, checkpoints, faster CPU
models etc. are tempting but they have trade-offs.

Do not configure your system via the command line: Configurations exist in your configuration file and
associated components, SimObjects, etc.

References

� Martin et al. 2005. Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. ACM SIGARCH Computer Architecture News.
https://doi.org/10.1145/1105734.1105747

� Binkert et al. 2006. The M5 simulator: Modeling Networked Systems. IEEE Micro.
https://doi.org/10.1109/MM.2006.82

� Binkert, et al. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39
http://dx.doi.org/10.1145/2024716.2024718

� Lowe-Power et al 2021. The gem5 Simulator: Version 20.0+. ArXiv Preprint
ArXiv:2007.03152, 2021. https://doi.org/10.48550/arXiv.2007.03152

� Nowatzki et al. 2015. Architectural simulators considered harmful. IEEE Micro.
https://doi.org/10.1109/MM.2015.74

https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1109/MM.2006.82
http://dx.doi.org/10.1145/2024716.2024718
https://doi.org/10.48550/arXiv.2007.03152
https://doi.org/10.1109/MM.2015.74

