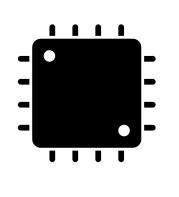
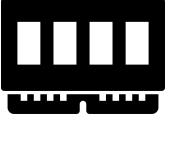


Northwestern Jniversity

UNIVERSITY


Introduction

- Simulating long-duration workloads on gem5 takes prohibitively long time.
- Even with gem5's fastest Atomic model, reaching a steady state can be a timeconsuming task.


Application / Host Runtime	<pre># Instruction (Billions)</pre>	Approximate Simulation Time
Linux Boot	2.4 B	~24 min
1 second	2 B	~20 min
1 minute	120 B	~20 hours
10 minutes	1200 B	~8 days

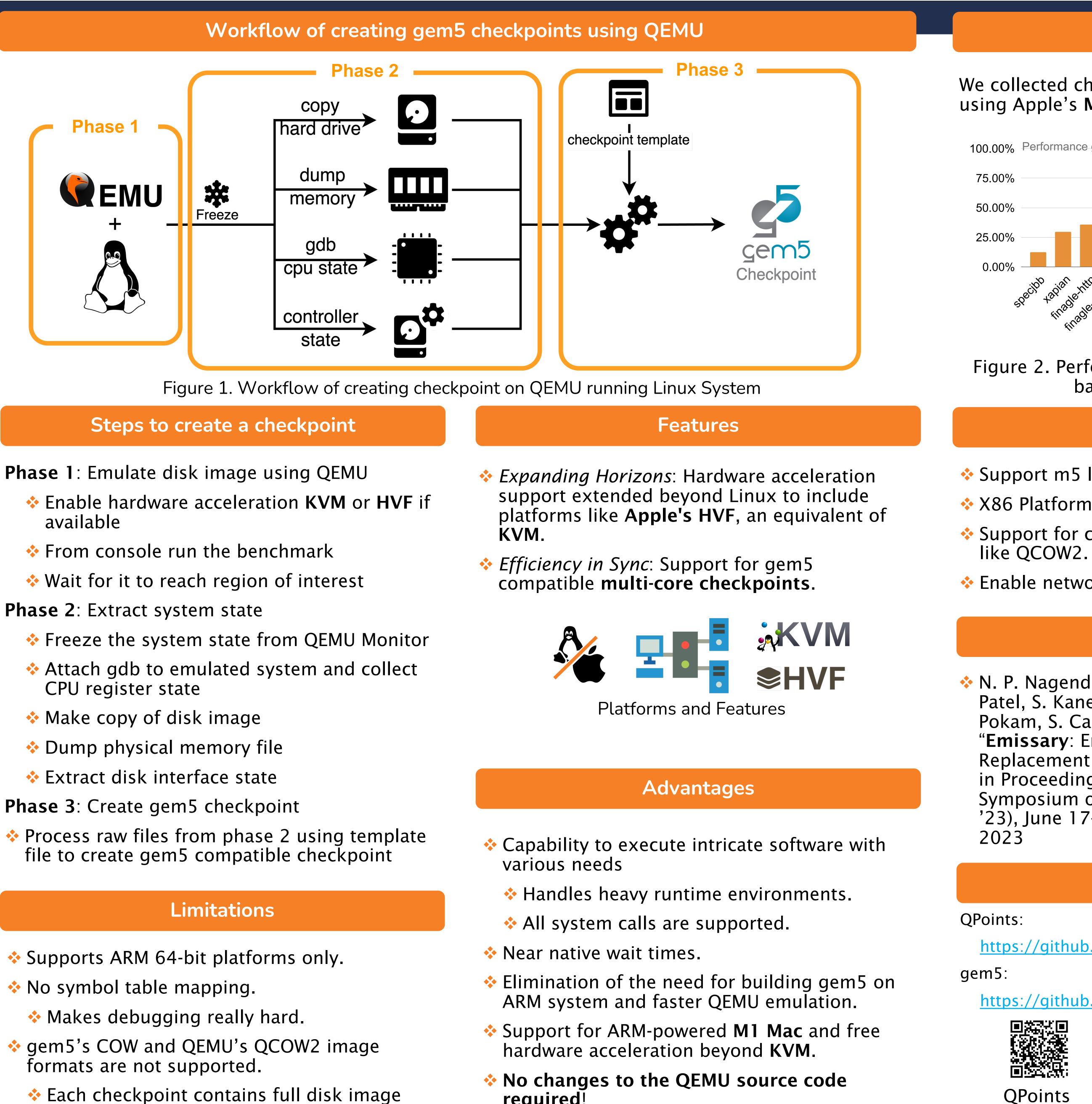
Approx. simulation time with gem5's Atomic CPU

Checkpoint State

CPU Registers

Physical Memory

Hard Disk Image


Controller State

A minimal subset of hardware state needed to create resumable checkpoint

Platform Configuration

- Device mapping in gem5 achieved through QEMU Virtual Configuration.
- The configuration is exposed as new system configuration.
- GIC v2 is enabled to support Apple M1 Checkpoints.
- Disk is attached as VirtIO device.
- The subset of VirtIO features supported by gem5 should be used during QEMU emulation.

QPoints: QEMU to gem5 ARM Full System Checkpointing Bhargav Reddy Godala, Ishita Chaturvedi, Yucan Wu, Simone Campanoni^{*}, David I August

Phase 2: Extract system state

Phase 3: Create gem5 checkpoint

Process raw files from phase 2 using template

- Supports ARM 64-bit platforms only.
- gem5's COW and QEMU's QCOW2 image

Each checkpoint contains full disk image

required!

Results

We collected checkpoints of 13 benchmarks using Apple's M1 Mac mini (HVF acceleration)

100.00% Performance gain of FDIP (in %) over No FDIP baseline

Figure 2. Performance gain of FDIP over No FDIP baseline of 13 workloads

Future Work

Support m5 like utility.

X86 Platform Support.

Support for compressed disk image formats

Enable network device support.

Published Works

N. P. Nagendra, B. R. Godala, I. Chaturvedi, A. Patel, S. Kanev, T. Moseley, J. Stark, G. A. Pokam, S. Campanoni, and D. I. August, "Emissary: Enhanced Miss Awareness Replacement policy for I2 instruction caching," in Proceedings of the 50th Annual International Symposium on Computer Architecture (ISCA) '23), June 17–21, 2023, Orlando, FL, USA,

Links

https://github.com/PrincetonUniversity/QPoints

https://github.com/PrincetonUniversity/gem5_FDIP

gem5

