
A gem5 Implementation of
the Codelet Model
Dawson Fox, Jose Monsalve Diaz, Xiaoming Li

1

Outline
● High level objective with novel innovation

○ Pushing architecture-agnostic hardware modules from the PXM (which is usually software)

○ Dedicated hardware unit for organization and scheduling of data movement

○ Scratchpad memory, hardware FIFOs to improve performance hindered by cache protocols

● Motivating example: what’s wrong with the state of the art?
○ DARTS flow

○ Tasking Models

○ Difficulties with data movement in traditional memory hierarchies

● The prototype we want to implement (with a diagram)
○ CodeletInterface for CUs

○ SU for codelet / memory codelet scheduling

○ MCU for fast data transformation

2

Implementation Objectives

3

Objective: HW Implementation of PXMs

● Program Execution Models (PXMs)
● “formal specification of the

application program interface (API)
of the computer system”

● System-wide agreement between
hardware and software

● Holistic organization of execution
throughout system stack

4

Objective: HW Implementation
of Sequential Codelet Model
● Codelets are bits of

sequentially-executed, non-preemptive,

side-effect free code

● Sequentially written programs containing

Codelets and control flow instructions

● Intended to be fine-grained with strong

input/output definitions

● The Scheduler Unit (SU) schedules

Codelets to Compute Units (CU) as

dependencies are fulfilled

5

Objective: Implement the MCU

● Memory Codelet Unit (MCU) -

dedicated execution unit for

Memory Codelets

● Fast-data-transform programmable

PNM hardware unit

● Mem. Codelets decouple memory

access from computation

● Perform data movements and

preprocessing/recode operations

● Leverage gem5 to explore

heterogeneity

6

Motivating Examples: Why bother
with this implementation?

7

Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
 {
 if(myTP_)
 myTP_->incRef();
 if(myThread.threadMCsched)
 {
 if(myThread.threadMCsched->getLocal())
 {
 if(myThread.threadMCsched->pushLocal(this))
 return;
 }
 }
 myThread.threadTPsched->pushCodelet(this);
 }

myTP->toSignal->decDep()

Problems?

8

Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
 {
 if(myTP_)
 myTP_->incRef();
 if(myThread.threadMCsched)
 {
 if(myThread.threadMCsched->getLocal())
 {
 if(myThread.threadMCsched->pushLocal(this))
 return;
 }
 }
 myThread.threadTPsched->pushCodelet(this);
 }

myTP->toSignal->decDep()

Pointer
Dereferencing

9

Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
 {
 if(myTP_)
 myTP_->incRef();
 if(myThread.threadMCsched)
 {
 if(myThread.threadMCsched->getLocal())
 {
 if(myThread.threadMCsched->pushLocal(this))
 return;
 }
 }
 myThread.threadTPsched->pushCodelet(this);
 }

myTP->toSignal->decDep()

Multiple
branches

10

Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
 {
 if(myTP_)
 myTP_->incRef();
 if(myThread.threadMCsched)
 {
 if(myThread.threadMCsched->getLocal())
 {
 if(myThread.threadMCsched->pushLocal(this))
 return;
 }
 }
 myThread.threadTPsched->pushCodelet(this);
 }

myTP->toSignal->decDep()

Multiple
function calls

11

Motivating Example 2: Tasking Models

● Software only
● Very heavy implementations:

○ OpenMP LLVM kmp_tasking.cpp: > 4000 lines of code

● No direct hardware support

● Victim of the target architecture

12

Motivating Example 3: Traditional Memory Hierarchy

● Data’s physical location in the system is ambiguous

● Data movement inherently tied to cache protocols

● Penalties for cache invalidation

● Issues with streaming
○ Software FIFOs equally ambiguous

○ Incurs software-based synchronization overheads (locks

& atomic mem. accesses)

○ Tied to cache line size

● Bandwidth / latency bound applications

Where’s the data?
13

The gem5 Codelet Model
Implementation

14

15

16

High level diagram of a target Codelet-based system

17

High level diagram of a target Codelet-based system

18

Codelet Interface

● Turn the CPU into a Codelet CU
● FIFO Codelet Queue

○ Codelets pushed to queue by SU
○ Round robin scheduling
○ Active Codelet is tail of queue

● Active Codelet
○ Read by CPU
○ Changed when CPU sends retire request
○ Retire request forwarded to SU

● Non-Codelet requests forwarded to
memory subsystem

19

High level diagram of a target Codelet-based system

20

Scheduling Unit (SU)

● Manages Codelet dependencies and
schedules Codelets to CUs

● Loads User Codelets
○ Mapping between Codelet name and fire

function
● Loads SCM Program

○ User program written in SCM-style,
Codelet-based code

● SCM Fetch-Decode
○ Fetching and decoding SCM insts.
○ Schedules execute insts. (Codelets)

21

How to Use the System

● User provides:
○ SCM Program

○ Code defining Codelets

■ Fire functions

■ Codelet name:fire function mapping

● User compiles Codelet-defining code into CU runtime

● CU runtime automatically pops Codelets when available and retires them when

finished

22

Continuing Implementation &
Future Work

23

High level diagram of a target Codelet-based system

24

Memory Codelet Unit (MCU)

● Special CU to Execute Memory Codelets
● Executes Memory Codelets

○ Emphasis on smart data movement,
prefetching, streaming

○ Preprocessing / recode operations,
Extract-Transform-Load

● Fast Data Transform arch.
○ Fast branching
○ Low latency data transformation
○ Parallel computation
○ Local scratchpad mem. and streaming

25

High level diagram of a target Codelet-based system

26

Data Queues

● Hardware FIFOs to allow for Streaming
Codelets

● Streaming Codelets:
○ Stream data from memory or different

Streaming Codelet during execution
○ Different dependency requirements

● Queue abstraction
○ Runtime can decide to use HW queue if

available; else SW queue
● Possible data queue implementation in

Codelet Interface

27

Conclusion

● Implementation of hardware features of PXMs
● Relatively architecture agnostic (support heterogeneity)
● Provide alternative memory system structures and smarter ways to prefetch, stream, etc.
● Reduce overhead of PXM
● Merge with Intel Skylake gem5 configuration
● Add MCU, scratchpad memory, data queues

Dawson Fox Jose Monsalve Diaz Xiaoming Li

dawsfox@udel.edu / dfox@anl.gov – jmonsalvediaz@anl.gov – xli@udel.edu

28

mailto:dawsfox@udel.edu
mailto:dfox@anl.gov
mailto:jmonsalvediaz@anl.gov
mailto:xli@udel.edu

References and Additional Information

gem5 Codelet Model implementation: https://github.com/dawsfox/gem5_cod/tree/codelet

More on streaming in the Codelet Model:
Siddhisanket Raskar. 2021. Dataflow software pipelining for codelet model using hardware-software co-design. Ph. D. Dissertation.
University of Delaware.

More on Memory Codelets:
https://doi.org/10.48550/arXiv.2302.00115 On Memory Codelets: Prefetching, Recoding, Moving and Streaming Data

More on DARTS / the Codelet Model:
J. Suettlerlein, S. Zuckerman, and G. R. Gao, “An implementation of the codelet model,” in Euro-Par 2013 Parallel Processing, F. Wolf, B.
Mohr, and D. an Mey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 633–644.

More on PXMs:
J. Dennis, “A parallel program execution model supporting modular software construction,” in 3rd Working Conf. on Massively Parallel
Programming Models, Nov. 1997, pp. 50–60.

29

https://github.com/dawsfox/gem5_cod/tree/codelet
https://doi.org/10.48550/arXiv.2302.00115

High level diagram of a target Codelet-based system

30

31

