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Outline
● High level objective with novel innovation

○ Pushing architecture-agnostic hardware modules from the PXM (which is usually software)

○ Dedicated hardware unit for organization and scheduling of data movement

○ Scratchpad memory, hardware FIFOs to improve performance hindered by cache protocols

● Motivating example: what’s wrong with the state of the art?
○ DARTS flow

○ Tasking Models

○ Difficulties with data movement in traditional memory hierarchies

● The prototype we want to implement (with a diagram)
○ CodeletInterface for CUs

○ SU for codelet / memory codelet scheduling

○ MCU for fast data transformation 
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Implementation Objectives
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Objective: HW Implementation of PXMs

● Program Execution Models (PXMs)
● “formal specification of the 

application program interface (API) 
of the computer system”

● System-wide agreement between 
hardware and software

● Holistic organization of execution 
throughout system stack
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Objective: HW Implementation 
of Sequential Codelet Model
● Codelets are bits of 

sequentially-executed, non-preemptive, 

side-effect free code

● Sequentially written programs containing 

Codelets and control flow instructions

● Intended to be fine-grained with strong 

input/output definitions

● The Scheduler Unit (SU) schedules 

Codelets to Compute Units (CU) as 

dependencies are fulfilled
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Objective: Implement the MCU

● Memory Codelet Unit (MCU) - 

dedicated execution unit for 

Memory Codelets

● Fast-data-transform programmable 

PNM hardware unit

● Mem. Codelets decouple memory 

access from computation

● Perform data movements and 

preprocessing/recode operations

● Leverage gem5 to explore 

heterogeneity 
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Motivating Examples: Why bother 
with this implementation?
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Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
  {
      if(myTP_)
         myTP_->incRef();
      if(myThread.threadMCsched)
      {
         if(myThread.threadMCsched->getLocal())
         {
            if(myThread.threadMCsched->pushLocal(this))
               return;
         }
      }
      myThread.threadTPsched->pushCodelet(this);
  }

myTP->toSignal->decDep()

Problems?
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Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
  {
      if(myTP_)
         myTP_->incRef();
      if(myThread.threadMCsched)
      {
         if(myThread.threadMCsched->getLocal())
         {
            if(myThread.threadMCsched->pushLocal(this))
               return;
         }
      }
      myThread.threadTPsched->pushCodelet(this);
  }

myTP->toSignal->decDep()

Pointer
Dereferencing
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Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
  {
      if(myTP_)
         myTP_->incRef();
      if(myThread.threadMCsched)
      {
         if(myThread.threadMCsched->getLocal())
         {
            if(myThread.threadMCsched->pushLocal(this))
               return;
         }
      }
      myThread.threadTPsched->pushCodelet(this);
  }

myTP->toSignal->decDep()

Multiple 
branches
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Motivating Example 1: DARTS Signaling Overhead
if(sync_.decCounter())
  {
      if(myTP_)
         myTP_->incRef();
      if(myThread.threadMCsched)
      {
         if(myThread.threadMCsched->getLocal())
         {
            if(myThread.threadMCsched->pushLocal(this))
               return;
         }
      }
      myThread.threadTPsched->pushCodelet(this);
  }

myTP->toSignal->decDep()

Multiple 
function calls
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Motivating Example 2: Tasking Models

● Software only
● Very heavy implementations:

○ OpenMP LLVM kmp_tasking.cpp: > 4000 lines of code

● No direct hardware support

● Victim of the target architecture
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Motivating Example 3: Traditional Memory Hierarchy

● Data’s physical location in the system is ambiguous

● Data movement inherently tied to cache protocols

● Penalties for cache invalidation

● Issues with streaming
○ Software FIFOs equally ambiguous

○ Incurs software-based synchronization overheads (locks 

& atomic mem. accesses)

○ Tied to cache line size

● Bandwidth / latency bound applications

Where’s the data?
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The gem5 Codelet Model 
Implementation
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High level diagram of a target Codelet-based system
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High level diagram of a target Codelet-based system
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Codelet Interface

● Turn the CPU into a Codelet CU
● FIFO Codelet Queue

○ Codelets pushed to queue by SU
○ Round robin scheduling
○ Active Codelet is tail of queue

● Active Codelet
○ Read by CPU
○ Changed when CPU sends retire request
○ Retire request forwarded to SU

● Non-Codelet requests forwarded to 
memory subsystem
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High level diagram of a target Codelet-based system
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Scheduling Unit (SU)

● Manages Codelet dependencies and 
schedules Codelets to CUs

● Loads User Codelets
○ Mapping between Codelet name and fire 

function
● Loads SCM Program

○ User program written in SCM-style, 
Codelet-based code

● SCM Fetch-Decode
○ Fetching and decoding SCM insts.
○ Schedules execute insts. (Codelets) 
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How to Use the System

● User provides:
○ SCM Program

○ Code defining Codelets

■ Fire functions

■ Codelet name:fire function mapping

● User compiles Codelet-defining code into CU runtime

● CU runtime automatically pops Codelets when available and retires them when 

finished
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Continuing Implementation & 
Future Work
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High level diagram of a target Codelet-based system
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Memory Codelet Unit (MCU)

● Special CU to Execute Memory Codelets
● Executes Memory Codelets

○ Emphasis on smart data movement, 
prefetching, streaming

○ Preprocessing / recode operations, 
Extract-Transform-Load

● Fast Data Transform arch.
○ Fast branching
○ Low latency data transformation
○ Parallel computation
○ Local scratchpad mem. and streaming
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High level diagram of a target Codelet-based system
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Data Queues

● Hardware FIFOs to allow for Streaming 
Codelets

● Streaming Codelets:
○ Stream data from memory or different 

Streaming Codelet during execution
○ Different dependency requirements

● Queue abstraction
○ Runtime can decide to use HW queue if 

available; else SW queue
● Possible data queue implementation in 

Codelet Interface
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Conclusion

● Implementation of hardware features of PXMs
● Relatively architecture agnostic (support heterogeneity)
● Provide alternative memory system structures and smarter ways to prefetch, stream, etc.
● Reduce overhead of PXM
● Merge with Intel Skylake gem5 configuration
● Add MCU, scratchpad memory, data queues

Dawson Fox         Jose Monsalve Diaz            Xiaoming Li

dawsfox@udel.edu / dfox@anl.gov       –      jmonsalvediaz@anl.gov         –            xli@udel.edu 
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High level diagram of a target Codelet-based system

30



31


