
Vishnu Ramadas, Daniel Kouchekinia, Ndubuisi Osuji, Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

Closing the GAP: Improving the Accuracy
of gem5’s GPU Models

Prior CPU-GPU SE Mode Support in gem5
• Execution-driven, cycle-level

§ Models complex CPUs & GPUs
§ Rapid prototyping of new features
§ Simulates HIP (AMD’s GPGPU language)

applications

§ UW HAL Group
§ Creating, validating and releasing docker image to

run GPU models with updated versions of ROCm
§ Released support for several GPU workloads in

gem5-resources, enabled CI testing

§ Publicly-available support focuses on Carrizo-
and Vega-Class
§ Do not always provide high accuracy relative to

equivalent real GPUs (hazardous)
[Gutierrez et al., HPCA ‘18]

2

Improving Register Allocation Support

• Simple register allocation – only 1 wavefront/CU at a time
• Even if sufficient registers are available for more WFs

• Issue: unrealistic relative to real GPUs
• Solution: add dynamic register allocator [Bruce et al. ISPASS ‘20]

• If enough registers available, schedule additional WFs concurrently/CU
• Potentially can utilize all WF slots depending on register requirements
• More complex, higher performance designs possible

3

Intuition: Dynamic allocator significantly improves accuracy

Dynamic Register Allocator Performance

0

0.5

1

1.5

2

2.5

3

3.5

2d
sh
fl

dy
na
mi
c_
sh
are
d

inl
ine
_a
sm

Ma
trix
Tra
ns
po
se

sh
are
dM
em
ory sh

fl

str
ea
m
un
rol
l

faM
ute
x

faM
ute
xU
niq

lfT
ree
Ba
rrU
niq

lfT
ree
Ba
rrU
niq
_L
oc
alE
xc
h

sle
ep
Mu
tex

sle
ep
Mu
tex
Un
iq

sp
inM
ute
xU
niq

sp
inM
ute
xE
BO

sp
inM
ute
xE
BO
Un
iq

for
ce
Tre
eT
es
t

Lu
les
h
no
h

bw
d_
bn

bw
d_
by
pa
ss

bw
d_
co
mp
os
ed
_m
od
el

bw
d_
po
ol

bw
d_
so
ftm
ax

fw
d_
bn

fw
d_
by
pa
ss

fw
d_
co
mp
os
ed
_m
od
el

fw
d_
po
ol

fw
d_
so
ftm
ax

N
ro

m
al

iz
ed

 S
pe

ed
up

Static Register Allocation Dynamic Register Allocation

Reality: dynamic register allocator 6% worse than simple – why?
4

Issue: Dependence Tracking

• GPU model did not track dependencies well à many stalls
• Result: optimizing register allocation in isolation was insufficient

• Issue: Proprietary GPU dependence checking sols unknown
• Solution: simple, in-order scoreboard

• Bit per register to track use status
• Cleared on instruction completion
• Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls
5

Issue: Unknowns in Proprietary Solutions

• Point solution (not scalable)

• Need for examining GPU behavior at a finer granularity

• Goal: Isolate behavior of different components to attack
inaccuracies at a more digestible level
• Targeting specific corresponding statistics in gem5 and the

ROC profiler

6

Microbenchmarks
• Hand-tuned HIP assembly kernel μBenches

• Atomic operations latency & bandwidth (with and without conflicts)
• L1 I$ size & latency
• L1 scalar and vector D$ size, latency, & bandwidth
• LDS (scratchpad) latency & bandwidth
• L2 $ latency & bandwidth
• Main memory latency & bandwidth
• TLB/Page Table latency & bandwidth
• Max FLOPs, Arithmetic latency for various operations, …

• Compare μBench output and GAP script [Jamieson gem5
Workshop ‘22] analysis to identify underlying inaccuracies

7

μBench Results Before Tuning
(Vega 20)

8

Most microbenchmarks see significant error when compared with real GPU.

μBench Discrepancy: L1, L2, & LDS Latency

• Issue: L1, L2, & LDS clocked twice
as fast as they should be
• Result: Lower latencies than actual

GPU

• Refinement of cache parameters
including latency and size

9

μBench Results After Clock Fixes

10

Points to need to iteratively refine

L1, L2, LDS latency errors reduced, accurate but others (especially BWs) increased

μBench Discrepancy: L1 & L2 Bandwidths

• Tuned coalescer, number of banks,
and L1 latency parameters

• Issue: Lack of cache bypassing for
GLC and SLC loads and stores
• GLC*-set instructions should not cache in L1
• SLC**-set instructions should not cache in L1 or L2

11

* Global-Level Coherence
** System-Level Coherence

μBench Results After BW-Related Changes

12

Improvements to L1 and L2 bandwidths, with no impact elsewhere

μBench Discrepancy: Atomics

• Issue: No GLC atomic support
• Consequence: all atomics treated as

system-scope atomics
• Added GLC atomic handling into

VIPER coherence protocol
• GLC atomics now performed at L2
• Additional fixes for GPU WB L2 caches

13

14

Atomics improved, but increased inaccuracies of other bandwidths

μBench Results After Atomic Changes
+ WB l2

Next Steps: Further Iterative Refinement
• Continue to use μBenches to guide iterative improvements

• Continue to improve accuracy with additional microbenchmarks

• Update model to provide additional features
• Update main memory HBM model to use multiple channels
• Atomic ALU constraints, TLB and I$ refinement
• Add additional support and HW features as uncovered by tests

• After μBenches obtain high fidelity:
• Validate larger benchmarks
• Add known good models for this and other GPUs

15

Conclusions
• Having validated gem5 models is important

• Existing GPU model does not always behave intuitively
• Point solutions insufficient

• Solution: Iterative refinement through μBenches
• Use microbenchmarks to tune for minimum absolute error in

GPU model
• Validate and release model improvements publicly

• We’ve already released some patches!

• Integrate performance regression testing into gem5

16

