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Prior CPU-GPU SE Mode Support in gem5
• Execution-driven, cycle-level

§ Models complex CPUs & GPUs
§ Rapid prototyping of new features
§ Simulates HIP (AMD’s GPGPU language) 

applications

§ UW HAL Group
§ Creating, validating and releasing docker image to 

run GPU models with updated versions of ROCm
§ Released support for several GPU workloads in 

gem5-resources, enabled CI testing

§ Publicly-available support focuses on Carrizo- 
and Vega-Class
§ Do not always provide high accuracy relative to 

equivalent real GPUs (hazardous)
[Gutierrez et al., HPCA ‘18]
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Improving Register Allocation Support

• Simple register allocation – only 1 wavefront/CU at a time
• Even if sufficient registers are available for more WFs

• Issue: unrealistic relative to real GPUs
• Solution: add dynamic register allocator [Bruce et al. ISPASS ‘20]

• If enough registers available, schedule additional WFs concurrently/CU
• Potentially can utilize all WF slots depending on register requirements
• More complex, higher performance designs possible
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Intuition: Dynamic allocator significantly improves accuracy



Dynamic Register Allocator Performance
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Reality: dynamic register allocator 6% worse than simple – why?
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Issue: Dependence Tracking

• GPU model did not track dependencies well à many stalls
• Result: optimizing register allocation in isolation was insufficient

• Issue: Proprietary GPU dependence checking sols unknown
• Solution: simple, in-order scoreboard

• Bit per register to track use status
• Cleared on instruction completion
• Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls
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Issue: Unknowns in Proprietary Solutions

• Point solution (not scalable)

• Need for examining GPU behavior at a finer granularity

• Goal: Isolate behavior of different components to attack 
inaccuracies at a more digestible level
• Targeting specific corresponding statistics in gem5 and the 

ROC profiler
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Microbenchmarks
• Hand-tuned HIP assembly kernel μBenches

• Atomic operations latency & bandwidth (with and without conflicts)
• L1 I$ size & latency
• L1 scalar and vector D$ size, latency, & bandwidth
• LDS (scratchpad) latency & bandwidth
• L2 $ latency & bandwidth
• Main memory latency & bandwidth
• TLB/Page Table latency & bandwidth
• Max FLOPs, Arithmetic latency for various operations, …

• Compare μBench output and GAP script [Jamieson gem5 
Workshop ‘22] analysis to identify underlying inaccuracies

7



μBench Results Before Tuning
(Vega 20)
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Most microbenchmarks see significant error when compared with real GPU.



μBench Discrepancy:  L1, L2, & LDS Latency

• Issue: L1, L2, & LDS clocked twice 
as fast as they should be
• Result: Lower latencies than actual 

GPU

• Refinement of cache parameters 
including latency and size
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μBench Results After Clock Fixes
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Points to need to iteratively refine

L1, L2, LDS latency errors reduced, accurate but others (especially BWs) increased



μBench Discrepancy: L1 & L2 Bandwidths

• Tuned coalescer, number of banks, 
and L1 latency parameters

• Issue: Lack of cache bypassing for 
GLC and SLC loads and stores
• GLC*-set instructions should not cache in L1
• SLC**-set instructions should not cache in L1 or L2
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* Global-Level Coherence
** System-Level Coherence



μBench Results After BW-Related Changes
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Improvements to L1 and L2 bandwidths, with no impact elsewhere



μBench Discrepancy: Atomics

• Issue: No GLC atomic support
• Consequence: all atomics treated as 

system-scope atomics
• Added GLC atomic handling into 

VIPER coherence protocol
• GLC atomics now performed at L2
• Additional fixes for GPU WB L2 caches
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Atomics improved, but increased inaccuracies of other bandwidths

μBench Results After Atomic Changes
+ WB l2



Next Steps: Further Iterative Refinement
• Continue to use μBenches to guide iterative improvements

• Continue to improve accuracy with additional microbenchmarks

• Update model to provide additional features
• Update main memory HBM model to use multiple channels
• Atomic ALU constraints, TLB and I$ refinement
• Add additional support and HW features as uncovered by tests

• After μBenches obtain high fidelity:
• Validate larger benchmarks
• Add known good models for this and other GPUs
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Conclusions
• Having validated gem5 models is important

• Existing GPU model does not always behave intuitively
• Point solutions insufficient

• Solution: Iterative refinement through μBenches
• Use microbenchmarks to tune for minimum absolute error in 

GPU model
• Validate and release model improvements publicly

• We’ve already released some patches!

• Integrate performance regression testing into gem5
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