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@ Prior CPU-GPU SE Mode Support in gem5b

models

[Gutierrez et al., HPCA ‘18]

Execution-driven, cycle-level
= Models complex CPUs & GPUs
» Rapid prototyping of new features

» Simulates HIP (AMD’s GPGPU language)
applications

UW HAL Group

» Creating, validating and releasing docker image to
run GPU models with updated versions of ROCm

= Released support for several GPU workloads in
gemb>S-resources, enabled Cl testing

Publicly-available support focuses on Carrizo-
and Vega-Class

= Do not always provide high accuracy relative to
equivalent real GPUs (hazardous)
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Improving Register Allocation Support

Simple register allocation — only 1 wavefront/CU at a time
« Even if sufficient registers are available for more WFs

Issue: unrealistic relative to real GPUs

Solution: add dynamic register allocator [Bruce et al. ISPASS ‘20]
« If enough registers available, schedule additional WFs concurrently/CU

« Potentially can utilize all WF slots depending on register requirements

« More complex, higher performance designs possible

Intuition: Dynamic allocator significantly improves accuracy
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@ Dynamic Register Allocator Performance

m Static Register Allocation = Dynamic Register Allocation
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Reality: dynamic register allocator 6% worse than simple — why?
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Issue: Dependence Tracking

* GPU model did not track dependencies well - many stalls
* Result: optimizing register allocation in isolation was insufficient

* |ssue: Proprietary GPU dependence checking sols unknown

« Solution: simple, in-order scoreboard  Scoreboard - gegister File
» Bit per register to track use status

« Cleared on instruction completion
* Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls



@ Issue: Unknowns in Proprietary Solutions

* Point solution (not scalable)

* Need for examining GPU behavior at a finer granularity

* Goal: Isolate behavior of different components to attack
inaccuracies at a more digestible level

« Targeting specific corresponding statistics in gemb and the
ROC profiler



@ Microbenchmarks

 Hand-tuned HIP assembly kernel uBenches
« Atomic operations latency & bandwidth (with and without conflicts)
« L1193 size & latency
« L1 scalar and vector D$ size, latency, & bandwidth
« LDS (scratchpad) latency & bandwidth
« L2 $ latency & bandwidth
« Main memory latency & bandwidth
« TLB/Page Table latency & bandwidth
« Max FLOPs, Arithmetic latency for various operations, ...

 Compare uBench output and GAP script [Jamieson gem5
Workshop ‘22] analysis to identify underlying inaccuracies



Absolute Error WRT Real GPU

uBench Results Before Tuning

(Vega 20)
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Most microbenchmarks see significant error when compared with real GPU.



@ uBench Discrepancy: L1, L2, & LDS Latency

 |ssue: L1, L2, & LDS clocked twice B Before Tuning [ After Tuning

as fast as they should be >
« Result: Lower latencies than actual 40
GPU
20
» Refinement of cache parameters : I
including latency and size LILAT L2 LAT LDS_LAT
Microbenchmarks

Absolute Error w.r.t Real GPU




Absolute Error WRT Real GPU

uBench Results After Clock Fixes

[ Before Changes [ After Latency-Focused Changes
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L1, L2, LDS latency errors reduced, accurate but others (especially BWs) increased

Points to need to iteratively refine
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uBench Discrepancy: L1 & L2 Bandwidths

B Prior Changes [ After Changes
60

 Tuned coalescer, number of banks,
and L1 latency parameters

z 40
o
* Issue: Lack of cache bypassing for &
GLC and SLC loads and stores
GLC*-set instructions should not cache in L1 § .
* % : : . < q,‘b A Q)bi\ ff,b ’b(f’\
SLC**-set instructions should not cache in L1 or L2 & q‘/f‘ & N & o
e}
O Y A NZ NZEEEN 24
7

v Microbenchmarks

* Global-Level Coherence
** System-Level Coherence
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Absolute Error WRT Real GPU

uBench Results After BW-Related Changes

[ Before Changes [} After Latency-Focused Changes After Bandwidth-Focused Changes
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Improvements to L1 and L2 bandwidths, with no impact elsewhere
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@ uBench Discrepancy: Atomics

B Prior Changes [ After Changes

* |ssue: No GLC atomic support .

* Consequence: all atomics treated as 60
system-scope atomics »
» Added GLC atomic handling into JI I
VIPER coherence protocol )
* GLC atomics now performed at L2 |
. Additional fixes for GPU WB L2 caches - ¢ .3

Absolute Error WRT Real GPU
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uBench Results After Atomic Changes

B After Atomic-Focused Changes + WB 12

B Before Changes [ After Latency-Focused Changes After Bandwidth-Focused Changes
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Atomics improved, but increased inaccuracies of other bandwidths
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@ Next Steps: Further Iterative Refinement

* Continue to use pBenches to guide iterative improvements
« Continue to improve accuracy with additional microbenchmarks

 Update model to provide additional features

« Update main memory HBM model to use multiple channels
« Atomic ALU constraints, TLB and I$ refinement
« Add additional support and HW features as uncovered by tests

» After uBenches obtain high fidelity:
- Validate larger benchmarks
« Add known good models for this and other GPUs



@ Conclusions

* Having validated gem5 models is important
« Existing GPU model does not always behave intuitively

 Point solutions insufficient

« Solution: Iterative refinement through pBenches

« Use microbenchmarks to tune for minimum absolute error in
GPU model

« Validate and release model improvements publicly
We've already released some patches!

* Integrate performance regression testing into gem>
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