Closing the GAP: Improving the Accuracy
of gemS&’s GPU Models

Vishnu Ramadas, Daniel Kouchekinia, Ndubuisi Osuji, Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

Application
source

GCN3 ELF +
Code metadata
x86 ELF

hardware

@ Prior CPU-GPU SE Mode Support in gem5b

models

[Gutierrez et al., HPCA ‘18]

Execution-driven, cycle-level
= Models complex CPUs & GPUs
» Rapid prototyping of new features

» Simulates HIP (AMD’s GPGPU language)
applications

UW HAL Group

» Creating, validating and releasing docker image to
run GPU models with updated versions of ROCm

= Released support for several GPU workloads in
gemb>S-resources, enabled Cl testing

Publicly-available support focuses on Carrizo-
and Vega-Class

= Do not always provide high accuracy relative to
equivalent real GPUs (hazardous)

o

Improving Register Allocation Support

Simple register allocation — only 1 wavefront/CU at a time
« Even if sufficient registers are available for more WFs

Issue: unrealistic relative to real GPUs

Solution: add dynamic register allocator [Bruce et al. ISPASS ‘20]
« If enough registers available, schedule additional WFs concurrently/CU

« Potentially can utilize all WF slots depending on register requirements

« More complex, higher performance designs possible

Intuition: Dynamic allocator significantly improves accuracy

3

@ Dynamic Register Allocator Performance

m Static Register Allocation = Dynamic Register Allocation

3.5
Q.
5 3
D
o 2.5
Q.
»w 2
©
Q15
©
g 1
= 0.5
2 1L | | |
0
Q Q& 2 & \\ + o. O O x> © 2 Qo
‘(‘ ‘ g 9 o‘ Q\ \0 Q Q\ Q\ Q, 9 (e} Q 0 b o
o < or & & g’ée' °° ,§ & 9 «’." Nd 0_‘9 ,z,-\9 0-8’ O0 e,é \,\‘f 04\6/@& & 2 o‘(‘&,@b/ AQ 59 “‘&
o . && %&@ooe*?&&&&«* AR YA o3 25 o
& T E L & é@z o FSS & M T & < ’
& NS & & & QRN Y © Q 0 Q
) Q’b 2 0&9 2 Qé\ o°& oo(°
Q) 7/ SO/
L 3 Q&
é&
S

Reality: dynamic register allocator 6% worse than simple — why?

4

o

Issue: Dependence Tracking

* GPU model did not track dependencies well - many stalls
* Result: optimizing register allocation in isolation was insufficient

* |ssue: Proprietary GPU dependence checking sols unknown

« Solution: simple, in-order scoreboard Scoreboard - gegister File
» Bit per register to track use status

« Cleared on instruction completion
* Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls

@ Issue: Unknowns in Proprietary Solutions

* Point solution (not scalable)

* Need for examining GPU behavior at a finer granularity

* Goal: Isolate behavior of different components to attack
inaccuracies at a more digestible level

« Targeting specific corresponding statistics in gemb and the
ROC profiler

@ Microbenchmarks

 Hand-tuned HIP assembly kernel uBenches
« Atomic operations latency & bandwidth (with and without conflicts)
« L1193 size & latency
« L1 scalar and vector D$ size, latency, & bandwidth
« LDS (scratchpad) latency & bandwidth
« L2 $ latency & bandwidth
« Main memory latency & bandwidth
« TLB/Page Table latency & bandwidth
« Max FLOPs, Arithmetic latency for various operations, ...

 Compare uBench output and GAP script [Jamieson gem5
Workshop ‘22] analysis to identify underlying inaccuracies

Absolute Error WRT Real GPU

uBench Results Before Tuning

(Vega 20)

100

75

50
25
0
X \ K R W A >
< (s\\\\o b>® P (\\C} S8 e’od Q}\G\ <b$ 0P oV " OOG\ Q)Q\ s \er e}&- <§9 ¥
I P S N N N S R N - DAV A S R A
O N 07 \37 oSV N/ o) N '1,3) s a7 YV v v N Ny “0$/ <€
N 0 N ~ Y % > % N v % ™ 0 ;
\0 b 7/ \0 %C) / '(0
> & G Q N & NE
({.\\o / \,\ d v <
,5\0 Microbenchmark

Most microbenchmarks see significant error when compared with real GPU.

@ uBench Discrepancy: L1, L2, & LDS Latency

 |ssue: L1, L2, & LDS clocked twice B Before Tuning [After Tuning

as fast as they should be >
« Result: Lower latencies than actual 40
GPU
20
» Refinement of cache parameters : I
including latency and size LILAT L2 LAT LDS_LAT
Microbenchmarks

Absolute Error w.r.t Real GPU

Absolute Error WRT Real GPU

uBench Results After Clock Fixes

[Before Changes [After Latency-Focused Changes

100

75
50
25
0 & < K
N
‘°$ ‘\'\\c} & '\rf'b \o\ & (\G\ (\G\ <2;$ \q:b oSV > (\d Q;$ \,?6 \er \5{- Q,Q% &
S 0(\ éb/ Y \)(\ $ 7 @ @ S P $ 2 $ 2 @ S/ Q N 0 ((\/
’b6 S > N s/ > N N < A > o) N Q Q‘b 7 oF Q‘\ o
O/ S ©7 © sV N N N N < q,/ N/ V2 % V A\ &7 7 <
& © S A e v »° < V4 N, J N S N
O D7 &o A d < v o s &7
é‘\\o ,/b \/\ 7 \:\ ((\Q <
6‘0 Microbenchmark

L1, L2, LDS latency errors reduced, accurate but others (especially BWs) increased

Points to need to iteratively refine
10

o

uBench Discrepancy: L1 & L2 Bandwidths

B Prior Changes [After Changes
60

 Tuned coalescer, number of banks,
and L1 latency parameters

z 40
o
* Issue: Lack of cache bypassing for &
GLC and SLC loads and stores
GLC*-set instructions should not cache in L1 § .
* % : : . < q,‘b A Q)bi\ ff,b ’b(f’\
SLC**-set instructions should not cache in L1 or L2 & q‘/f‘ & N & o
e}
O Y A NZ NZEEEN 24
7

v Microbenchmarks

* Global-Level Coherence
** System-Level Coherence

11

Absolute Error WRT Real GPU

uBench Results After BW-Related Changes

[Before Changes [} After Latency-Focused Changes After Bandwidth-Focused Changes

EJMMMJM Hn

125

00

75

5

2

o & > P QP) N S 2
> (‘\\\\ bb\/ R N b \QQ \?}\ °.> D 2 N 9 & b3 v Q\OQ N C')Q’Q N 7
O (,O 0703 / % > [> Q $ / %) %) > O% 97 3 0* (%)
©F Y o/ Q oSV N N N \d Q Qv V Y N ; N7 <
S) N N/ A ~ NG \:\ a7 \,‘], 7 \‘)/ 7 N 0\$ Q
N v N > % %

O S Q> < S
> % N/ N o <

® Microbenchmark

Improvements to L1 and L2 bandwidths, with no impact elsewhere

12

@ uBench Discrepancy: Atomics

B Prior Changes [After Changes

* |ssue: No GLC atomic support .

* Consequence: all atomics treated as 60
system-scope atomics »
» Added GLC atomic handling into JI I
VIPER coherence protocol)
* GLC atomics now performed at L2 |
. Additional fixes for GPU WB L2 caches - ¢ .3

Absolute Error WRT Real GPU

13

uBench Results After Atomic Changes

B After Atomic-Focused Changes + WB 12

B Before Changes [After Latency-Focused Changes After Bandwidth-Focused Changes

125

100

75

50

25

Absolute Error WRT Real GPU

0
o7 97/ K ¥ &7
O \/0 \,O ®® $? °\$ 4 N
N AS)
_06\ 6\ / @((\ 7
> ((\Q’ &

Microbenchmark

Atomics improved, but increased inaccuracies of other bandwidths

14

@ Next Steps: Further Iterative Refinement

* Continue to use pBenches to guide iterative improvements
« Continue to improve accuracy with additional microbenchmarks

 Update model to provide additional features

« Update main memory HBM model to use multiple channels
« Atomic ALU constraints, TLB and I$ refinement
« Add additional support and HW features as uncovered by tests

» After uBenches obtain high fidelity:
- Validate larger benchmarks
« Add known good models for this and other GPUs

@ Conclusions

* Having validated gem5 models is important
« Existing GPU model does not always behave intuitively

 Point solutions insufficient

« Solution: Iterative refinement through pBenches

« Use microbenchmarks to tune for minimum absolute error in
GPU model

« Validate and release model improvements publicly
We've already released some patches!

* Integrate performance regression testing into gem>

16

.@i@‘
@ WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

