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Introduction : Challenges in Application Scaling

Improving gem5’s GPUFS Support

Source:
1. https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
2. https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Simulating entire workloads would take months (or years) in modern gem5

How do we make it faster?
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Introduction : Prior CPU-GPU Support in gem5

Improving gem5’s GPUFS Support

• Execution-driven, cycle-level
§ Models complex CPUs & GPUs
§ Rapid prototyping of new features
§ Validate simulation with execute-in-

execute

• Prior work [Gutierrez et al. HPCA '18]
§ Runs unmodified ROCm 1.6 user stack
§ Simulates HIP and HCC applications
§ HCC/HIP are AMD’s GPGPU languages

Solid foundation, but does not support ML workloads
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Introduction : ML Support in gem5 CPU-GPU system
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We have started to add this support
[Alsop IISWC ‘19], [Roarty gem5 Workshop ‘21]
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Introduction : GPUFS Support

• Introduced in gem5 v22.0
• Previously only supported SE mode with ROCm 4.0
• FS mode supports ROCm 4.2

• Running in SE mode required either a specific host environment containing the 
ROCm stack or a Docker container that encapsulated this environment
• GPUFS removes all host requirements

• Improves simulation speed by functionally simulating memory copies

• Adds KVM CPU-GPU support

Improving gem5’s GPUFS Support
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Introduction : What is KVM CPU

• Kernel-based Virtual Machine (KVM):
• Open-source virtualization technology built into Linux. Turns Linux into a hypervisor that 

allows the host machine to run a virtual machine

• KVM CPU allows simulation to fast-forward by running the CPU instructions 
directly on the virtual machine, instead of timing CPU models
• Requires the application binary to be compiled for the host machine architecture

• Can be used in CPU-GPU systems to fast forward through CPU code

Improving gem5’s GPUFS Support
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Our Vision to Run Large-Scale Workloads 

Improving gem5’s GPUFS Support

• Not all parts of the application are equally interesting
• Some functions/code blocks are “more important” to its behavior

• Applications are simulated multiple times when evaluating new ideas

• Key Insight – some regions of the application can be run with low fidelity 
without affecting the way the other parts interact with the underlying 
hardware
• Can use KVM CPU support in GPUFS to do this
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Mixed Fidelity for Less Important Application Phases

Improving gem5’s GPUFS Support
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• May not want to fully simulate certain phases of applications 
• Solution: leverage gem5’s KVM CPU to functionally simulate these phases
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Using KVM CPUs : How Much Does This Help?
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• First Step : Utilized KVM support to fast forward through CPU code
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Using KVM CPUs : How Much Does This Help?

• Cycle Level GPU Simulation : 10-50 KIPS

• Functional KVM Simulation : 100s MIPS
• KVM CPU emulating GPU : 10s MIPS

• Conservative speedup for a kernel containing 2B SIMD instructions:
• 11 hours of cycle-level GPU simulation
• 3 minutes to execute on KVM CPU – single threaded

Improving gem5’s GPUFS Support

On-going Work: full set of results for GPU workloads 
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Further Refinement : Checkpoints

• Users often simulate the same application many times

• Can speedup the execution by not redoing the less important parts

• Solution: create checkpoints (ala CPU SimPoints)
• Capture the state of the execution when a checkpoint is taken
• Restore this state the next time the application is run
• Resume execution from the next instruction after restoration

• Previously only possible for CPUs
• Added support in GPUs, leveraging gem5’s FS mode and m5 operations

Improving gem5’s GPUFS Support
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Can We Do Even Better (Faster)?

• Current Task: convert less-important GPU kernels into CPU code

• Update LLVM GPU backend to emit CPU code for kernels

• Use KVM CPU (low fidelity) or another CPU model (medium fidelity)

• Most important phases get max fidelity, others get less fidelity

Improving gem5’s GPUFS Support
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Can We Do Even Better (Faster)?
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• Functionally simulate GPU kernels on CPU 
• Preliminary results : only 1.58x – 3x slower on KVM vs bare metal (1 thread)

Mixed Fidelity makes gem5 much closer to real HW
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Conclusion and Future Work
• Large-scale applications that run on the GPU models take extremely large simulation 

times

• Our updates are the first in a series to significantly reduce runtime for such workloads

• Significantly improves usability and reduce barriers to entry for simulation

• Future Work
• Profile ML workloads to find regions that can be annotated for checkpointing
• Integrate other accelerators into mainline gem5
• Support accelerator fast-forwarding and checkpointing 
• Additional publicly available applications and resources

Improving gem5’s GPUFS Support




