
Improving gem5’s GPUFS 
Support
Vishnu Ramadas*, Matthew Poremba^, Bradford M. Beckmann^, and 
Matthew D. Sinclair*^
*University of Wisconsin-Madison, ^AMD Research
vramadas@wisc.edu



2

Outline

• Introduction
• Proposal
• Progress
• Conclusion and Future Work

Improving gem5’s GPUFS Support



3

Introduction : Challenges in Application Scaling

Improving gem5’s GPUFS Support

Source:
1. https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
2. https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Simulating entire workloads would take months (or years) in modern gem5

How do we make it faster?

BERT, 
0.34B

Megatron
-LM, 8.3

GPT-3, 
175B

Mega-
TNLG, 
530B

5300B
15900B

0.1

1

10

100

1000

10000

100000

2018 2020 2022 2024 2026

Pa
ra

m
et

er
s C

ou
nt

 (B
ill

io
ns

)



4

Introduction : Prior CPU-GPU Support in gem5

Improving gem5’s GPUFS Support

• Execution-driven, cycle-level
§ Models complex CPUs & GPUs
§ Rapid prototyping of new features
§ Validate simulation with execute-in-

execute

• Prior work [Gutierrez et al. HPCA '18]
§ Runs unmodified ROCm 1.6 user stack
§ Simulates HIP and HCC applications
§ HCC/HIP are AMD’s GPGPU languages

Solid foundation, but does not support ML workloads



5

Introduction : ML Support in gem5 CPU-GPU system

MEM

CUCUCUCU
CP

X86 
Corex86 

Core

hardware 
models

CPU GPU

GCN3/Vega ELF +
Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpenApp Source

User space

OS kernel space

Improving gem5’s GPUFS Support

We have started to add this support
[Alsop IISWC ‘19], [Roarty gem5 Workshop ‘21]



6

Introduction : GPUFS Support

• Introduced in gem5 v22.0
• Previously only supported SE mode with ROCm 4.0
• FS mode supports ROCm 4.2

• Running in SE mode required either a specific host environment containing the 
ROCm stack or a Docker container that encapsulated this environment
• GPUFS removes all host requirements

• Improves simulation speed by functionally simulating memory copies

• Adds KVM CPU-GPU support

Improving gem5’s GPUFS Support



7

Introduction : What is KVM CPU

• Kernel-based Virtual Machine (KVM):
• Open-source virtualization technology built into Linux. Turns Linux into a hypervisor that 

allows the host machine to run a virtual machine

• KVM CPU allows simulation to fast-forward by running the CPU instructions 
directly on the virtual machine, instead of timing CPU models
• Requires the application binary to be compiled for the host machine architecture

• Can be used in CPU-GPU systems to fast forward through CPU code

Improving gem5’s GPUFS Support



8

Outline

• Introduction
• Proposal
• Progress
• Conclusion and Future Work

Improving gem5’s GPUFS Support



9

Our Vision to Run Large-Scale Workloads 

Improving gem5’s GPUFS Support

• Not all parts of the application are equally interesting
• Some functions/code blocks are “more important” to its behavior

• Applications are simulated multiple times when evaluating new ideas

• Key Insight – some regions of the application can be run with low fidelity 
without affecting the way the other parts interact with the underlying 
hardware
• Can use KVM CPU support in GPUFS to do this



10

Mixed Fidelity for Less Important Application Phases

Improving gem5’s GPUFS Support

Simulated system

Time

kernel
launch

kernel
completion

kernel
launch

CPU
GPU

Wall Clock

kernel
launch

kernel
comp. kernel

launchCPU

GPU

functional only
simulation

functional+timing
simulation

• May not want to fully simulate certain phases of applications 
• Solution: leverage gem5’s KVM CPU to functionally simulate these phases



11

Outline

• Introduction
• Proposal
• Progress
• Conclusion and Future Work

Improving gem5’s GPUFS Support



12

Using KVM CPUs : How Much Does This Help?

Improving gem5’s GPUFS Support

Simulated system

Time

kernel
launch

kernel
completion

kernel
launch

CPU
GPU

Wall Clock

kernel
launch

kernel
comp. kernel

launchCPU

GPU

functional only
simulation

functional+timing
simulation

• First Step : Utilized KVM support to fast forward through CPU code



13

Using KVM CPUs : How Much Does This Help?

• Cycle Level GPU Simulation : 10-50 KIPS

• Functional KVM Simulation : 100s MIPS
• KVM CPU emulating GPU : 10s MIPS

• Conservative speedup for a kernel containing 2B SIMD instructions:
• 11 hours of cycle-level GPU simulation
• 3 minutes to execute on KVM CPU – single threaded

Improving gem5’s GPUFS Support

On-going Work: full set of results for GPU workloads 



14

Further Refinement : Checkpoints

• Users often simulate the same application many times

• Can speedup the execution by not redoing the less important parts

• Solution: create checkpoints (ala CPU SimPoints)
• Capture the state of the execution when a checkpoint is taken
• Restore this state the next time the application is run
• Resume execution from the next instruction after restoration

• Previously only possible for CPUs
• Added support in GPUs, leveraging gem5’s FS mode and m5 operations

Improving gem5’s GPUFS Support



15

Can We Do Even Better (Faster)?

• Current Task: convert less-important GPU kernels into CPU code

• Update LLVM GPU backend to emit CPU code for kernels

• Use KVM CPU (low fidelity) or another CPU model (medium fidelity)

• Most important phases get max fidelity, others get less fidelity

Improving gem5’s GPUFS Support



16

Can We Do Even Better (Faster)?

Improving gem5’s GPUFS Support

Simulated system

Time

kernel
launch

kernel
completion

kernel
launch

CPU
GPU

Wall Clock

kernel
launch

kernel
comp. kernel

launchCPU

GPU

functional only
simulation

functional+timing
simulation

• Functionally simulate GPU kernels on CPU 
• Preliminary results : only 1.58x – 3x slower on KVM vs bare metal (1 thread)

Mixed Fidelity makes gem5 much closer to real HW



17

Outline

• Introduction
• Proposal
• Progress
• Conclusion and Future Work

Improving gem5’s GPUFS Support



18

Conclusion and Future Work
• Large-scale applications that run on the GPU models take extremely large simulation 

times

• Our updates are the first in a series to significantly reduce runtime for such workloads

• Significantly improves usability and reduce barriers to entry for simulation

• Future Work
• Profile ML workloads to find regions that can be annotated for checkpointing
• Integrate other accelerators into mainline gem5
• Support accelerator fast-forwarding and checkpointing 
• Additional publicly available applications and resources

Improving gem5’s GPUFS Support




