
Modern Front-end Support in
gem5
Bhargav Reddy Godala, Nayana Prasad Nagendra, Ishita
Chaturvedi, Simone Campanoni, David I. August

PRINCETON
UNIVERSITY

Liberty
Research Group

Arcana
Research Group

Introduction

• We have seen that aggressive Out-of-Order CPUs tolerate data miss latency.

• Modern CPUs employ decoupled front-end to tolerate instruction miss
latency.

• What is a decoupled front-end?

State-of-Art Front-end

I-Cache

Fetch
Engine

Front-end

Branch Re-steer Address

IFU

N
IP BPU

IAG

Decode
Back-
end

Traditional Front-end

3

FTQ: Fetch Target Queue
IFU: Instruction Fetch Unit
BPU: Branch Prediction Unit
IAG: Instruction Address Generation
NIP: Next Instruction Pointer

EMISSARY, Nagendra and Godala, et al.

I-Cache

Fetch
Engine

N
IP BPU

IAG

Decode
Back-
end

Front-end

FTQ

Prefetch

IFU

Branch Re-steer Address

Fetch Directed Instruction Prefetching Pipeline (FDIP) [Glenn Reinman et al., MICRO’99]

3

FTQ: Fetch Target Queue
IFU: Instruction Fetch Unit
BPU: Branch Prediction Unit
IAG: Instruction Address Generation
NIP: Next Instruction Pointer

EMISSARY, Nagendra and Godala, et al.

State-of-Art Front-end

Key Idea: Prefetch in the predicted path

Design

Challenges in Implementing FDIP in gem5

• Fetch stage is already complex.

• Dynamic Instruction objects are constructed before BPU is invoked.

• Branch Instruction is needed to invoke BPU.

• Sequence numbers are used to squash mis-speculated instructions.

Branch Sequence Numbers

• Unique sequence number to identify branch.

• Every dynamic instruction contains:

• A sequence number

• Branch Sequence of prior branch

BrSeq
Seq Seq Instruction

10 100 Br
10 101 I0
10 102 I1
10 103 I2
11 104 Br
11 105 I3
11 106 I4
11 107 I5

Fetch Target Queue (FTQ)

• Each entry consists of:

• A begin address (target of prior branch)

• End address (branch PC)

• Target address

• Branch Sequence number

Prefetch Engine

• Prefetch Buffer:

• Address to prefetch

• Issue one prefetch and insert
into Fetch Buffer

F0F1F2FTQ

L0L1L2L3L4L5L6Prefetch Buffer

Fetch Buffer L0L1L2L3

Ready
Pending

F0F1F3

Prefetch request issued

Modified Fetch Stage

Optimizations

Basic Block Based BTB

Index Traget
br1 target1
br2 target2
br3 Target3

PC based BTB

Index Target Branch
target1 target2 br2
target2 target3 br3

BBL based BTB

Pre-decode And Early Correction

• BBL BTB are indexed using beginning of a basic block.

• Beginning of a basic block is identified:

• Using the next instruction following a branch instruction.

• Early Correction:

• When an unconditional branch is predicted not taken.

• Flush FTQ and restart by using the pre-decoded target.

Branch Predictor Changes

• BBL Based Branch Predictor lookup.

• Branch Sequence numbers.

• ITTAGE indirect predictor support.

X86 vs ARM

• X86:

• Variable width instructions

• Pre-decoding is very expensive

• Micro Sequenced Ops

• Exception handling using ROM

• ARM:

• Fixed width instructions

• Pre-decoding is not expensive

Micro Branches in X86

• In X86 there are instructions which are dynamically decoded to loops.

• Example: String copy

• These branches are not inserted into BTB.

• This is handled as a special case:

• These are not seen by the FDIP pipeline.

• At the time of fetch; a back edge is predicted taken.

• FTQ will not be flushed till a squash from later stages is received.

Performance Bug Fixes

• Perfect recovery of branch history.

• TAGE Bimodal table roll back.

Evaluation

Performance of ARM workloads with FDIP

IPC Performance improvement of ARM workloads in % over No FDIP baseline

Field Alderlake like
ISA ARM 64-bit
L1I 32KB
L1D 64KB
L2 1MB (16-way)
L3 2MB

FTQ 24 entry 192 inst
Width 8-wide

ROB Size 512 entries
IQ/LQ/SQ 240/128/72

BPU TAGE, ITTAGE
BTB 16K entries

gem5 O3 CPU simulation
parameters

Performance of X86 workloads with FDIP

IPC Performance improvement of X86 workloads in % over No FDIP baseline

Field Alderlake like
ISA X86 64-bit
L1I 32KB
L1D 64KB
L2 1MB (16-way)
L3 2MB

FTQ 24 entry 192 inst
Width 8-wide

ROB Size 512 entries
IQ/LQ/SQ 240/128/72

BPU TAGE, ITTAGE
BTB 16K entries

gem5 O3 CPU simulation
parameters

Performance of X86 SPEC17 workloads with FDIP

IPC Performance improvement of X86 SPEC17 workloads in % over No FDIP baseline

Field Alderlake like
ISA X86 64-bit
L1I 32KB
L1D 64KB
L2 1MB (16-way)
L3 2MB

FTQ 24 entry 192 inst
Width 8-wide

ROB Size 512 entries
IQ/LQ/SQ 240/128/72

BPU TAGE, ITTAGE
BTB 16K entries

gem5 O3 CPU simulation
parameters

Published Works

• EMISSARY: Enhanced Miss Awareness Replacement Policy for L2 Instruction
Caching at ISCA’23

• Session 2B

Conclusion

• We implemented FDIP in gem5.

• A significant speedup over baseline.

• This work was used in EMISSARY [ISCA’23].

• Available at https://github.com/PrincetonUniversity/gem5_FDIP

• Workloads: https://tinyurl.com/yjsc2aw4

Workloadsgem5 + FDIP

https://github.com/PrincetonUniversity/gem5_FDIP
https://tinyurl.com/yjsc2aw4

Thank you
Questions?

