Generating Synthetic Traffic for Heterogeneous Architectures

Mario Badr | Natalie Enright Jerger | Riken Gohil | Radhika Jagtap | Matteo Andreozzi

Perform Once-Few Times

Perform Many Times

What is Synthetic Traffic?

Perform Once-Few Times

Perform Many Times

Goal: Synthetic Traffic Results ~= Original Workload Results

Perform Once-Few Times

Perform Many Times

gem5 Contributions (WIP)

A Heterogeneous System

Distribute models, not traces

Modify the model for custom behaviour

Converge quickly to final result

Why Synthetic Traffic?

- 1. What kind of message should be sent?
- 2. When should a message be sent?
- 3. How big is the message?
- 4. Where is the message going?
- 5. How does it change over time?

The Statistical Profile

1. What kind of message should be sent? Read Percentage

2. When should a message be sent? Average Delta Time

3. How big is the message? Average Data Size

4. Where is the message going? Address Synthesis

5. How does it change over time? State Transitions

A Potential Statistical Profile

Generating Traffic

Generating Time-Varying Traffic

Divide	Group	Model	Transition
Discretize trace into intervals	Group similar intervals into a state	Model each state	Model transitions between states

From Trace to Profile

Dividing a Trace into Intervals

GPU

Interval Replay Results

Bandwidth

Grouping Similar Intervals

3 Groups

The Representative Intervals

Medoids

Original Observed Data

Replacing Observed Data with Medoid

Representative Replay

Grouped Replay Results

Bandwidth

Observed Sequence of Medoids

Markov Chain

Compare Simulated Distribution to Steady State

$$\begin{bmatrix} 0.60 \\ 0.16 \\ 0.24 \end{bmatrix} \approx \begin{bmatrix} 0.58 \\ 0.19 \\ 0.23 \end{bmatrix}$$

Steady State Markov Chain

$$\begin{bmatrix} 0.6 & .07 & .33 \\ 0.6 & 0.2 & 0.2 \\ 0.5 & 0.5 & 0.0 \end{bmatrix}^{512} = \begin{bmatrix} 0.58 & 0.19 & 0.23 \\ 0.58 & 0.19 & 0.23 \\ 0.58 & 0.19 & 0.23 \end{bmatrix}$$

Converging Early

Time to Converge

Total Bandwidth

Converging Results

Bandwidth

• What should the interval size be?

How many groups should their be?

• How should addresses be synthesized?

Future Work