Fast, Accurate, and Novel
Performance Evaluations with

PinCPU

gemb Workshop @ ISCA ¢ June 22, 2025

Nicholas Mosier,' Hamed Nemati,? John C. Mitchell,’ Caroline Trippel’

" Stanford University 2 KTH Royal Institute of Technology

Detailed end-to-end simulation of modern
benchmarks in gem5 is intractible.

EEE%SPEC SPEC CPU2017 contains >160 trillion instructions total

+

95 gem5 gemb’s O3CPU simulates 140 KIPS on host

8 > 36 host CPU-years to simulate all of SPEC CPU2017 with O3CPU

Solution: SimPoint
[Perelman+ SIGMETRICS’03]

SimPoint is a phased-based sampling technique:
1. Profile the workload using AtomicSimpleCPU (weeks)
2. Select <k representative regions (simpoints) (seconds)
3. Fast-forward to each simpoint using KvmCPU (minutes)
4. Simulate each simpoint using O3CPU (hours)

</.>" —>| profile |

binary @ select simpoints <
e —.
simpoint 1 simpPint n .
— (\ modify hardware

fast-forward simulate | fast-forward | simulate > resimulate (hours)
| |
' ' . - -
ipC1 ian 1pCest = 2 lpC@

Can we use SimPoint to evaluate hardware-software co-designs in gem5? ,

SimPoint for HW-SW co-design

</> profile (weeks) evaluat.e.
unmodified
unmodified B
HW-SW
binary > fast-forward fast-forward baseline
I] B
— - I I : I
Limitation 1: profiling step takes i | | |
months every time we recompile I : : | modify software > recompile
[I . .
I T T I + regenerate simpoints
G | i |
</> I]
evaluate
modified i [[| dified
binary 1 - HE T —
I 1 I HW-SW
fast forward fast-forward ‘ proposal

Limitation 2: KvmCPU cannot Limitation 3: selected simpoints in modified vs. unmodified binary
fast-forward past new instructions are incongruent (may map to different parts of the execution)

We present PInCPU: gem5’s first fast-forwarding CPU model
to support dynamic binary instrumentation.

Limitation 1: profiling step takes
months every time we recompile

We can resolve all these limitations if gemb
could dynamically instrument the execution...

AN

Limitation 2: cannot fast-forward Limitation 3: selected simpoints in modified vs. unmodified
past new instructions binary may map to different parts of the execution

Key observation:

PinCPU uses Intel Pin [Luk+ PLDros] to allow gemb5 users to both
fast-forward and dynamically instrument userspace workloads.

CPU model Description Host insn
gem>5 PmCPU rate (approx.)

(syscall emul.) model O3CPU Out-of-order simulated CPU | 140 KIPS

AtomicSimpleCPU | Fastest simulated CPU 1.6 MIPS
workload orchestration sensitive instructions, P
(mappmg memory page fau[ts except|ons Kva PU KVM-based native CPU 8.6 GIPS
syncing registers, . - - -

PinCPU Pin-based native CPU 3.4 GIPS

| Pin-based VM Workload supporting DBI
_ﬁg plug-in mterface

{your plugin here}]

2
BBV profiler plugin ISA extension emulation plugins
for faster simpoint generation for fast-forwarding past new insns.

simpoint translation plugin
for ensuring congruent simpoints

6

Recall Limitation 1: slow simpoint generation

€\
. A basic block vector
profile (AtomicSimpleCPU) — weeks (BBV) profile

select simpoints <
— —
simpoint 1 simpoint n
1 |
fast-forward simulate | fast-forward | simulate
KvmCPU O3CPU KvmCPU O3CPU

A basic block vector (BBV) counts the dynamic executions of each basic block
in a given n-instruction interval. Collection method:
* Official: AtomicSimpleCPU SimPoint probe A slow

e Unofficial: valgrind’s BBV profil_er A unreliable (due to different HW capabilities,
address space layout, syscall behavior, ...)
> divergent execution paths > BBV misalignment

i@E Solution: develop a PinCPU plugin

BBV Plugin for fast + accurate simpoint generation:

Plugin code (simplified)

BBV plugin
src/cpu/pin/tools/bbv.cc (124 LoC)

configs/pin-bbv.py

std::map<ADDRINT, uint64_t> bbv;

=1 configuration script
send command: void analyze(uint64 t &count) { ++count; } ‘
| “bbv dump” | —
void instrument(BBL bbl) {
gem5 ﬂmﬁ PinCPU BBL_InsertCall(bbl, analyze, &bbv[BBL_Address(bbl)]);
(syscall emul.) [ffmodel] !

|

struct BBVPIlugin final : PinCPUPIlugin {
oid reg() override {

call Analyze() whenever a
| basic blockis executed

|

BBL_AddInstrumentFunction(instrument);

| Pin VM workload I
_ﬁg plug-in interface

160,

“{1:42, 2:2, 10:

verride {

) register instrumentation

14:226, ...}"

callbacks using Intel Pin API
|

b

|

} plugin;

BBV Plugin for fast + accurate simpoint generation:
Usage (simplified)

I ./build/X86/gem5.opt configs/pin-bbv.py --bbv=bbv.txt --interval=50_000_ 000 -- ./exe

4

== BBV file

— bbv.txt

4

I ./simpoint —loadFVFile bbv.txt —saveSimpoints simpoints.txt I

!

simpoint list
simpoints.txt

BBV Plugin slowdown vs. AtomicSimpleCPU BBV probe
and valgrind BBV profile (SPEC CPU2017 intspeed ref)

100000
10000
1000
host runtime,
normalized to 100
native execution
10 II I I I I
.| || 1 1 N | 1AL H
(e et
n_> c. > /‘ B 2 A_S \D 2.5 2 5% o0
e 601 %C 05 “\G R\ “)0 00“«\ % *26 0‘5\6“ AA \ee V\a“%e 651 ! %e
009< © 20° rﬁ* oL ’5\66 6 A%e*o
GV %) 6o oko-

Bl AtomicSimpleCPU BBV probe* | valgrind BBV tool [Jj PinCPU BBV plugin
6100x slowdown 31x slowdown 5.3x slowdown

* estimated (extrapolated from prefix of first benchmark input) 10

Recall Limitation 2: can’t fast-forward past new instructions

Hardware Fault Isolation (HFI) [Narayan+ ASPLOS’23] introduces new sandbox instructions:

 hfi enter:entersandbox
* hfi exit: exit sandbox
* hmowv: sandboxed load/store

fast forward . :) .
hfi enter hmov simulate hfi exit

with KvmCPU
¢
#UD

* Workaround: write standalone emulator to roughly A\ 1aborious, inaccurate
approximate performance on host [Narayan+ ASPLOS’23]
 Workaround: trapt+emulate with KvmCPU A sow

HFI Plugin for ISA extension emulation

Our HFI plugin for PIinCPU hooks onto hfi enter, hmov,hfi exit
and emulates them, rather than executing them directly.

‘ l | simulate
hfi _enter with O3CPU hfi exlt

HFI HFI HFI
PinCPU PinCPU PinCPU
plugin plugin plugin

fast forward with
KvaPb‘ P|nCPU

Recall Limitation 3: incongruent simpoints

* Problem: evaluating unmodified baseline and HW-SW
proposal on different regions of the workload.
 Solution: SimPoint Translation plugin for PinCPU

o -=! unmodified BBV
@’l select simpoints < =
k I,

A
o

/> simpoint 1 simpoint n
] A
unmodified
binary | |
l [[i
l [] |
1 [1 I
</> I I i 1
modified I
(e.g., HFI)
binary simpoint 1 simpoint n

13

—_— =3 modified BBV
@ select simpoints f

SimPoint Translation Plugin translates
unmodified binary simpoints to modified binary

* Use stable source locations as an indicator of forward progress
* stable = executes same number of times in both binaries
* stable source locations are collected using BBV plugin + offline analysis

. . Q) .. .
@ select simpoints < —_— =-¢ unmodified BBV
e —) = m—
/> A — =
simpoint 1 simpoint n
A A
unmodified
binary
foo.c:10 bar.c:8| bar.c:12I baz.c:42 | G
] [==! modified BBV
| I p = —
</> foo.c:10 bar.c:8| bar.c:12| baz.c:421 lﬂ:)
modified . .
. |
binary

simpoint 1 simpoint n

14

SimPoint Translation Plugin: error of estimated SLH
overhead on gem5 O3CPU for SPEC CPU2017 intspeed

96.4% 91.2%

30% o
050 B untranslated simpoints
' imat LH . .
errorm. estimated S 20% " translated simpoints
runtime overhead 15%
(ground truth: end-to-end 10%
execution in O3CPU) 5% I I B I l l
0% - - - -
st “a\“ e “3\0) “a\(\ s L wwal® 026 o xefO . ,@5’& 5 gaxa\® -Oﬂ o xea® A
pe %C > A el = (O gK \e© > ge?- 9 XL
00 pe‘\ 602 60> 620 'Om(\@'m xa\@ 20 o 6&\) @@q@“ eo

Speculative load hardening (SLH)
[Carruth LLVM’18] IS @ SOftware-only Simpoint translation reduces

Spectre defense that involves error by >50% on average!
heavy program transformation.

15

Putting it all together: PIinCPU + our 3 plugins enable
fast+accurate hardware-software co-evaluation in gem5b

* Hardware-software co-evaluation: comparison of two
proposals, at least one of which modifies {software, hardware}

* Co-evaluation #1: Spectre defenses
e Hardware: STT [vu+ MICRO’19]
e Software: SLH [carruth LLVM’18]

* Co-evaluation #2: Sandboxing proposals
* Hardware-software: HFI [Narayan+ ASPLOS23]
* Software: Segue [Narayan+ ASPLOS’25]

* These proposals have never been compared before

16

Co-evaluation #1: Spectre defenses

runtime
(normalized to
unmodified
baseline)

600 pet

Runtime on SPEC CPU2017 intspeed, estimated using our PinCPU BBV
profiler + PinCPU-enabled SimPoint translation methodology

2.2
2
1.8
1.6
1.4
Il | | 1
. — I I —_ — | H - .
0 ref o xef o.ref xef xef o.ref o.ref cef eal
wore"=gn. gfé; om“?fs? .;a\aﬂcbm\(’ 625 -*26A LepSien® i ee'B aﬂ%ez/ g5 X" ged™

B STT:11.1% overhead [SLH: 78.2% overhead

STT outperforms SLH while offering stronger security guarantees >
hardware-supported Spectre defenses well worth the performance-complexity trade-off. 17

Co-evaluation #2: Sandboxing proposals

Runtime on SPEC CPU2006, estimated using our PinCPU BBV profiler
+ HFI plugin + PinCPU-enabled SimPoint translation methodology

1
0.98
0.96

0.94

0.92
0.9

0.88

0.86

0.84

0.82 I
0.8

ncre! 00 e 5700 500 omned®

229507 bqua“‘“ 4732 A?>3 VLA

p62\
B HFI1: 6.3% speedup [Segue: 8.1% speedup

Segue (software-only) outperforms HFI (hardware-software)

* only WebAssembly-compatible > HFI not worth the performance/complexity trade-off?
benchmarks evaluted

18

Other Features & Limitations

e Features:

* PinCPU supports checkpointing
 Semantic breakpoints: “stop after instruction 0x1234 executes 100 times”

* Limitations (as of this presentation):

* Only supports syscall emulation (SE) mode, but not gemb5 full system (FS)
mode

* Doesn’t support multithreaded workloads
* Only supports x86-64 ISA

* Future work:
* QemuCPU for full system instrumentation
* Add multi-threading support
* Add other DBI backends (e.g., DynamoRIQO) to support more ISAs

19

Conclusion

* PInCPU is the first gem5 CPU model to support both fast-
forwarding and dynamic binary instrumentation.

* PinCPU plugins allow gem5 users to quickly profile workloads,
emulate new instructions, and develop new evaluation
methodologies.

* Our three example PinCPU plugins make it possible to perform
fast and accurate hardware-software co-evaluations in gem>.

Email: nmosier@stanford.edu
GitHub: github.com/StanfordPLArchSec/pincpu-gemb5

20

	Slide 1: Fast, Accurate, and Novel Performance Evaluations with PinCPU
	Slide 2: Detailed end-to-end simulation of modern benchmarks in gem5 is intractible.
	Slide 3
	Slide 4
	Slide 5
	Slide 6: PinCPU uses Intel Pin [Luk+ PLDI’05] to allow gem5 users to both fast-forward and dynamically instrument userspace workloads.
	Slide 7: Recall Limitation 1: slow simpoint generation
	Slide 8: BBV Plugin for fast + accurate simpoint generation: Plugin code (simplified)
	Slide 9: BBV Plugin for fast + accurate simpoint generation: Usage (simplified)
	Slide 10: BBV Plugin slowdown vs. AtomicSimpleCPU BBV probe and valgrind BBV profile (SPEC CPU2017 intspeed ref)
	Slide 11: Recall Limitation 2: can’t fast-forward past new instructions
	Slide 12: HFI Plugin for ISA extension emulation
	Slide 13: Recall Limitation 3: incongruent simpoints
	Slide 14: SimPoint Translation Plugin translates unmodified binary simpoints to modified binary
	Slide 15: SimPoint Translation Plugin: error of estimated SLH overhead on gem5 O3CPU for SPEC CPU2017 intspeed
	Slide 16: Putting it all together: PinCPU + our 3 plugins enable fast+accurate hardware-software co-evaluation in gem5
	Slide 17: Co-evaluation #1: Spectre defenses
	Slide 18: Co-evaluation #2: Sandboxing proposals
	Slide 19: Other Features & Limitations
	Slide 20: Conclusion

