
Fast, Accurate, and Novel
Performance Evaluations with

PinCPU
gem5 Workshop @ ISCA • June 22, 2025

Nicholas Mosier,1 Hamed Nemati,2 John C. Mitchell,1 Caroline Trippel1

1 Stanford University 2 KTH Royal Institute of Technology

1

Detailed end-to-end simulation of modern
benchmarks in gem5 is intractible.

SPEC CPU2017 contains >160 trillion instructions total

gem5’s O3CPU simulates ≈140 KIPS on host

> 36 host CPU-years to simulate all of SPEC CPU2017 with O3CPU

+

=

2

SimPoint is a phased-based sampling technique:
1. Profile the workload using AtomicSimpleCPU (weeks)
2. Select ≤k representative regions (simpoints) (seconds)
3. Fast-forward to each simpoint using KvmCPU (minutes)
4. Simulate each simpoint using O3CPU (hours)

3

Solution: SimPoint
[Perelman+ SIGMETRICS’03]

profile

select simpoints

simpoint 1 simpoint n

ipc1 ipcn
ipc𝑒𝑠𝑡 = ෍ 𝑖𝑝𝑐𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑖

binary

Can we use SimPoint to evaluate hardware-software co-designs in gem5?

modify hardware
→ resimulate (hours)fast-forward simulate fast-forward simulate

4

SimPoint for HW-SW co-design

profile (weeks)

fast forward simulate fast-forward simulatenew_insn

profile (weeks)

fast-forward simulate fast-forward simulate

#UD

modified
binary

unmodified
binary

modify software → recompile
+ regenerate simpoints

evaluate
unmodified
HW-SW
baseline

evaluate
modified
HW-SW
proposal

Limitation 2: KvmCPU cannot
fast-forward past new instructions

Limitation 3: selected simpoints in modified vs. unmodified binary
are incongruent (may map to different parts of the execution)

Limitation 1: profiling step takes
months every time we recompile

5Limitation 2: cannot fast-forward
past new instructions

Limitation 3: selected simpoints in modified vs. unmodified
binary may map to different parts of the execution

Limitation 1: profiling step takes
months every time we recompile

We can resolve all these limitations if gem5
could dynamically instrument the execution…

Key observation:

We present PinCPU: gem5’s first fast-forwarding CPU model
to support dynamic binary instrumentation.

BBV profiler plugin
for faster simpoint generation

PinCPU uses Intel Pin [Luk+ PLDI’05] to allow gem5 users to both
fast-forward and dynamically instrument userspace workloads.

6

gem5
(syscall emul.)

PinCPU
model

Pin-based VM workload

plug-in interface

simpoint translation plugin
for ensuring congruent simpoints

ISA extension emulation plugins
for fast-forwarding past new insns.

1 2 3

{your plugin here}

sensitive instructions,
page faults, exceptions,

workload orchestration
(mapping memory,
syncing registers, …)

CPU model Description Host insn
rate (approx.)

O3CPU Out-of-order simulated CPU 140 KIPS

AtomicSimpleCPU Fastest simulated CPU 1.6 MIPS

KvmCPU KVM-based native CPU 8.6 GIPS

PinCPU Pin-based native CPU
supporting DBI

3.4 GIPS

Recall Limitation 1: slow simpoint generation

7

fast-forward
(KvmCPU)

fast-forward
(KvmCPU)

simulate
(O3CPU)

simulate
(O3CPU)

profile (AtomicSimpleCPU) — weeks
basic block vector
(BBV) profile

select simpoints

simpoint 1 simpoint n

A basic block vector (BBV) counts the dynamic executions of each basic block
in a given n-instruction interval. Collection method:
• Official: AtomicSimpleCPU SimPoint probe
• Unofficial: valgrind’s BBV profiler

slow

unreliable (due to different HW capabilities,
address space layout, syscall behavior, …)
→ divergent execution paths → BBV misalignment

Solution: develop a PinCPU plugin

BBV Plugin for fast + accurate simpoint generation:
Plugin code (simplified)

8

std::map<ADDRINT, uint64_t> bbv;

void analyze(uint64_t &count) { ++count; }

void instrument(BBL bbl) {
 BBL_InsertCall(bbl, analyze, &bbv[BBL_Address(bbl)]);

}

struct BBVPlugin final : PinCPUPlugin {
 void reg() override {
 BBL_AddInstrumentFunction(instrument);
 }
 std::string command() override {
 if (args.at(0) == "dump")
 return Dump(bbv);
 }

} plugin;

BBV plugin
src/cpu/pin/tools/bbv.cc (124 LoC)

configs/pin-bbv.py

configuration script

gem5
(syscall emul.)

PinCPU
ff model

Pin VM workload

plug-in interface

send command:
“bbv dump”

call Analyze() whenever a
basic block is executed

register instrumentation
callbacks using Intel Pin API

“{1:42, 2:2, 10:
160, 14:220, ...}”

“bbv dump”

BBV Plugin for fast + accurate simpoint generation:
Usage (simplified)

./build/X86/gem5.opt configs/pin-bbv.py --bbv=bbv.txt --interval=50_000_000 -- ./exe

BBV file
bbv.txt

./simpoint –loadFVFile bbv.txt –saveSimpoints simpoints.txt

simpoint list
simpoints.txt

BBV Plugin slowdown vs. AtomicSimpleCPU BBV probe
and valgrind BBV profile (SPEC CPU2017 intspeed ref)

10

1

10

100

1000

10000

100000

*

* estimated (extrapolated from prefix of first benchmark input)

AtomicSimpleCPU BBV probe*
6100x slowdown

valgrind BBV tool
31x slowdown

PinCPU BBV plugin
5.3x slowdown

host runtime,
normalized to

native execution

hfi_enter hmov

Recall Limitation 2: can’t fast-forward past new instructions

Hardware Fault Isolation (HFI) [Narayan+ ASPLOS’23] introduces new sandbox instructions:
• hfi_enter: enter sandbox
• hfi_exit: exit sandbox
• hmov: sandboxed load/store

fast forward
with KvmCPU

#UD

hfi_exitsimulate

• Workaround: write standalone emulator to roughly
approximate performance on host [Narayan+ ASPLOS’23]

• Workaround: trap+emulate with KvmCPU

laborious, inaccurate

slow

hfi_enter hmov

HFI Plugin for ISA extension emulation

Our HFI plugin for PinCPU hooks onto hfi_enter, hmov, hfi_exit
and emulates them, rather than executing them directly.

fast forward with
KvmCPU PinCPU hfi_exit

simulate
with O3CPU

HFI
PinCPU
plugin

HFI
PinCPU
plugin

HFI
PinCPU
plugin

Recall Limitation 3: incongruent simpoints

13

modified
(e.g., HFI)

binary

unmodified
binary

select simpoints

simpoint 1 simpoint n

select simpoints

simpoint 1 simpoint n

unmodified BBV

modified BBV

• Problem: evaluating unmodified baseline and HW-SW
proposal on different regions of the workload.

• Solution: SimPoint Translation plugin for PinCPU

• Use stable source locations as an indicator of forward progress
• stable = executes same number of times in both binaries
• stable source locations are collected using BBV plugin + offline analysis

SimPoint Translation Plugin translates
unmodified binary simpoints to modified binary

14

modified
binary

unmodified
binary

select simpoints

simpoint 1 simpoint n

simpoint 1 simpoint n

unmodified BBV

modified BBV
foo.c:10 bar.c:8

foo.c:10 bar.c:8

bar.c:12

bar.c:12

baz.c:42

baz.c:42

SimPoint Translation Plugin: error of estimated SLH
overhead on gem5 O3CPU for SPEC CPU2017 intspeed

15

Simpoint translation reduces
error by >50% on average!

Speculative load hardening (SLH)
[Carruth LLVM’18] is a software-only
Spectre defense that involves
heavy program transformation.

error in estimated SLH
runtime overhead

(ground truth: end-to-end
execution in O3CPU)

0%
5%

10%
15%
20%
25%
30%

96.4% 91.2%

untranslated simpoints

translated simpoints

Putting it all together: PinCPU + our 3 plugins enable
fast+accurate hardware-software co-evaluation in gem5

• Hardware-software co-evaluation: comparison of two
proposals, at least one of which modifies {software, hardware}

• Co-evaluation #1: Spectre defenses
• Hardware: STT [Yu+ MICRO’19]

• Software: SLH [Carruth LLVM’18]

• Co-evaluation #2: Sandboxing proposals
• Hardware-software: HFI [Narayan+ ASPLOS’23]

• Software: Segue [Narayan+ ASPLOS’25]

• These proposals have never been compared before

16

Co-evaluation #1: Spectre defenses

17

runtime
(normalized to

unmodified
baseline)

STT outperforms SLH while offering stronger security guarantees →
hardware-supported Spectre defenses well worth the performance-complexity trade-off.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

STT: 11.1% overhead SLH: 78.2% overhead

Runtime on SPEC CPU2017 intspeed, estimated using our PinCPU BBV
profiler + PinCPU-enabled SimPoint translation methodology

Co-evaluation #2: Sandboxing proposals

18

Segue (software-only) outperforms HFI (hardware-software)
→ HFI not worth the performance/complexity trade-off?* only WebAssembly-compatible

benchmarks evaluted

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

HFI: 6.3% speedup Segue: 8.1% speedup

Runtime on SPEC CPU2006, estimated using our PinCPU BBV profiler
+ HFI plugin + PinCPU-enabled SimPoint translation methodology

Other Features & Limitations

• Features:
• PinCPU supports checkpointing
• Semantic breakpoints: “stop after instruction 0x1234 executes 100 times”

• Limitations (as of this presentation):
• Only supports syscall emulation (SE) mode, but not gem5 full system (FS)

mode
• Doesn’t support multithreaded workloads
• Only supports x86-64 ISA

• Future work:
• QemuCPU for full system instrumentation
• Add multi-threading support
• Add other DBI backends (e.g., DynamoRIO) to support more ISAs

19

Conclusion

• PinCPU is the first gem5 CPU model to support both fast-
forwarding and dynamic binary instrumentation.

• PinCPU plugins allow gem5 users to quickly profile workloads,
emulate new instructions, and develop new evaluation
methodologies.

• Our three example PinCPU plugins make it possible to perform
fast and accurate hardware-software co-evaluations in gem5.

20

GitHub: github.com/StanfordPLArchSec/pincpu-gem5

Email: nmosier@stanford.edu

	Slide 1: Fast, Accurate, and Novel Performance Evaluations with PinCPU
	Slide 2: Detailed end-to-end simulation of modern benchmarks in gem5 is intractible.
	Slide 3
	Slide 4
	Slide 5
	Slide 6: PinCPU uses Intel Pin [Luk+ PLDI’05] to allow gem5 users to both fast-forward and dynamically instrument userspace workloads.
	Slide 7: Recall Limitation 1: slow simpoint generation
	Slide 8: BBV Plugin for fast + accurate simpoint generation: Plugin code (simplified)
	Slide 9: BBV Plugin for fast + accurate simpoint generation: Usage (simplified)
	Slide 10: BBV Plugin slowdown vs. AtomicSimpleCPU BBV probe and valgrind BBV profile (SPEC CPU2017 intspeed ref)
	Slide 11: Recall Limitation 2: can’t fast-forward past new instructions
	Slide 12: HFI Plugin for ISA extension emulation
	Slide 13: Recall Limitation 3: incongruent simpoints
	Slide 14: SimPoint Translation Plugin translates unmodified binary simpoints to modified binary
	Slide 15: SimPoint Translation Plugin: error of estimated SLH overhead on gem5 O3CPU for SPEC CPU2017 intspeed
	Slide 16: Putting it all together: PinCPU + our 3 plugins enable fast+accurate hardware-software co-evaluation in gem5
	Slide 17: Co-evaluation #1: Spectre defenses
	Slide 18: Co-evaluation #2: Sandboxing proposals
	Slide 19: Other Features & Limitations
	Slide 20: Conclusion

