
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

Architectural Exploration with
gem5

Andreas Sandberg

Stephan Diestelhorst

William Wang

Xi’An: ASPLOS 2017

ARM Research

2017-04-09

© ARM 2017 2

Text 54pt sentence case This is an interactive presentation

Please ask questions!
Even if they are in:

• English

• Chinese

• Swedish

• German

© ARM 2017 3

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Presenters: Andreas Sandberg, William Wang, Stephan Diestelhorst (ARM Cambridge,
UK)

 13:00 Introduction (10 min) – Stephan

 13:10 Getting Started (15 min) – William

 13:25 Configuration (25 min) – Andreas

 13:50 Debug & Trace (20 min) – William

 14:10 Creating SimObjects (20 min) – Andreas

 14:30 Coffee Break (30 min)

 15:00 Memory System (40 min) – Stephan

 15:40 CPU Models (20 min) – Andreas

 16:00 Advanced Features (45 min) – all

 16:45 Contributing to gem5 (20 min) – Andreas

© ARM 2017

What is gem5?

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Level of detail

 HW Virtualization

 Very no/limited timing

 The same Host/guest ISA

 Functional mode

 No timing, chain basic blocks of instructions

 Can add cache models for warming

 Timing mode

 Single time for execute and memory lookup

 Advanced on bundle

 Detailed mode

 Full out-of-order, in-order CPU models

 Hit-under-miss, reodering, …

µarch Exploration

HW Validation

Perf. Validation

Cycle Accurate

1–50 KIPS

RTL simulation

High-level perf./power

Architecture exploration

Approximately Timed

0.2–3 MIPS

gem5

Loosely Timed

50–200 MIPS

Qemu

SW Dev

HW Virt.

gem5 + kvm

GIPS

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Users and contributors

 Widely used in academia and industry

 Contributions from

 ARM, AMD, Google,…

 Wisconsin, Cambridge, Michigan, BSC, …
0

200

400

600

800

1000

1200

2011 2012 2013 2014 2015 2016

Publications with gem5

© ARM 2017 9

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

When not to use gem5

 Performance validation

 gem5 is not a cycle-accurate microarchitecture model!

 This typically requires more accurate models such as RTL simulation.

 Commercial products such as ARM CycleModels operate in this space.

 Core microarchitecture exploration

 Only do this if you have a custom, detailed, CPU model!

 gem5’s core models were not designed to replace more accurate microarchitectural models.

 To validate functional correctness or test bleeding-edge ISA improvements

 gem5 is not as rigorously tested as commercial products.

 New (ARMv8.0+) or optional instructions are sometimes not implemented

 Commercial products such as ARM FastModels offer better reliability in this space.

© ARM 2017 10

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why gem5?

 Runs real workloads

 Analyze workloads that customers use and care about

 … including complex workloads such as Android

 Comprehensive model library

 Memory and I/O devices

 Full OS, Web browsers

 Clients and servers

 Rapid early prototyping
 New ideas can be tested quickly

 System-level impact can be quantified

 System-level insights
 Enables us to study complex

memory-system interactions

 Can be wired to custom models

 Add detail where it matters, when it matters!

Ubuntu (Linux 4.x) Android Nougat

But not a microarchitectural

model out of the box!

© ARM 2017

Getting Started

William Wang

© ARM 2017 13

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Prerequisites

 Operating system:

 OSX, Linux

 Limited support for Windows 10 with a Linux environment

 Software:

 git

 Python 2.7 (dev packages)

 SCons

 gcc 4.8 or clang 3.1 (or newer)

 SWIG 2.0.4 or newer

 make

 Optional:

 dtc (to compile device trees)

 ARMv8 cross compilers (to compile workloads)

 python-pydot (to generate system diagrams)

© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling gem5

 Guest architecture

 Several architectures in the source

tree.

 Most common ones are:

 ARM

 NULL – Used for trace-drive simulation

 X86 – Popular in academia, but very

strange timing behavior

 Optimization level:

 debug: Debug symbols, no/few

optimizations

 opt: Debug symbols + most

optimizations

 fast: No symbols + even more

optimizations

$ scons build/ARM/gem5.opt

© ARM 2017 15

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling gem5’s device trees

1. sudo apt install device-tree-compiler

2. make –C system/arm/dt

 Device trees are used to describe hard-to-discover devices

 armv8_gem5_v1_Ncpu.dtb

 Traditional CMP/SMP configuration with N cores

 Built from armv8.dts and platforms/vexpress_gem5_v1.dtsi

 armv8_gem5_v1_big_little_M_N.dtb

 bigLittle configurations with M big cores and N small cores

 Built from armv8.dts and platforms/vexpress_gem5_v1.dtsi

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling Linux for gem5

1. sudo apt install gcc-aarch64-linux-gnu

2. git clone -b gem5/v4.4 https://github.com/gem5/linux-arm-gem5

3. cd linux-arm-gem5

4. make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- gem5_defconfig

5. make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- -j `nproc`

 Builds the default kernel configuration for gem5

 Has support for most of the devices that gem5 supports

https://github.com/gem5/linux-arm-gem5

© ARM 2017 17

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Example disk images

 Example kernels and disk images can be downloaded from gem5.org/Download

 This includes pre-compiled boot loaders

 Old but useful to get started

 Download and extract this into a new directory:
 wget http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

 mkdir dist; cd dist

 tar xvf ../aarch-system-2014-10.tar.xz

 Set the M5_PATH variable to point to this directory:

 export M5_PATH=/path/to/dist

 Most example scripts try to find files using M5_PATH

 Kernels/boot loaders/device trees in ${M5_PATH}/binaries

 Disk images in ${M5_PATH}/disks

http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Running an example script

 Simulates a bL system with 1+1 cores

 Uses a functional ‘atomic’ CPU model

 Use the ‘timing’ CPU type for an example OoO + InO configuration

$ build/ARM/gem5.opt configs/example/arm/fs_bigLITTLE.py \

--kernel path/to/vmlinux \

--cpu-type atomic \

--dtb $PWD/system/arm/dt/armv8_gem5_v1_big_little_1_1.dtb \

--disk your_disk_image.img

© ARM 2017 19

Text 54pt sentence case Demo

© ARM 2017

Configuration and Control

Andreas Sandberg

© ARM 2017 21

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Design philosophy

 gem5 is conceptually a Python library implemented in C++

 Configured by instantiating Python classes with matching C++ classes

 Model parameters exposed as attributes in Python

 Running is controlled from Python, but implemented in C++

 Configuration and running are two distinct steps

 Configuration phase ends with a call to instantiate the C++ world

 Parameters cannot be changed after the C++ world has been created

© ARM 2017 22

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Useful tricks

 gem5 can be launched interactively

 Use the -i option

 Pretty prompt if ipython has been installed

 Still requires a simulation script

 Ignore configs/example/{fs,se}.py and configs/common/FSConfig.py

 Far too complex

 Tries to handle every single use case in a single configuration file

 Good configuration examples:

 configs/learning_gem5/

 configs/example/arm/

© ARM 2017 23

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Simulated system

C++

Python

Control flow

Instantiate objects

Instantiate C++

objects

m5.instantiate()

Create Python

objects
Run simulation

m5.simulate()

Simulate in C++

Running guest

code

C
al

lb
ac

k
E
x
it
 e

ve
n
t

Run simulation

m5.simulate()

Simulate in C++

Running guest

code

C
al

lb
ac

k
E
x
it
 e

ve
n
t

© ARM 2017 24

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

General structure

 The simulator contains exactly one Root object

 Controls global configuration options

 root = Root(full_system=True)

 The root object contains one or more System instances

 A system represents a shared memory machine

 Contains devices, CPUs, and memories

 Multiple system may be connected using network interfaces

 Cluster on cluster simulation

 Not within the scope of this presentation

© ARM 2017 25

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

System Overview

© ARM 2017 26

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a “simple” system

 The system contains basic platform devices

 Interrupt controllers, PCI bridge, debug UART

 Sets up the boot loader and kernel as well

 See examples in config/example/arm:

 SimpleSystem (devices.py) defines a basic ARM system with PCI support

 Instantiated by createSystem() in fs_bigLITTLE.py

© ARM 2017 27

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Overriding model parameters

import m5

class L1DCache(m5.objects.Cache):

assoc = 2

size = '16kB'

class L1ICache(L1DCache):

assoc = 16

l1i = L1ICache(assoc=8,

repl=m5.objects.RandomRepl())

• Use defaults from L1DCache

• Override associativity again

• Use gem5’s base Cache

• Override associativity

• Override size

• Override parameters at

instantiation time

• We’ll cover memory ports later

© ARM 2017 28

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Running

m5.instantiate()

event = m5.simulate()

print 'Exiting @ tick %i: %s' \

% (m5.curTick(),

event.getCause())

m5.simulate(m5.tick.fromSeconds(0.1))

• Instantiate the C++ world

• Start the simulation

• Print why the simulator exited

• Sometimes desirable to call

m5.simulate() again.

• Run for a fixed number of

simulated seconds

© ARM 2017 29

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating Checkpoints

m5.checkpoint('name.cpt')

 Checkpoints can be used to store the simulator’s state

 Can be used to implement SimPoints or similar methodologies

 Checkpoint limitations:

 The act of taking a checkpoint affects system state!

 Checkpoints don’t store cache state

 Checkpoints don’t store pipeline state

© ARM 2017 30

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Restoring Checkpoints

m5.instantiate('name.cpt')

event = m5.simulate()

• Instantiate system and load

state from checkpoint

• Run in the same way as before

© ARM 2017 31

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Guest to simulation script communication

system.exit_on_work_items = True

…

event = m5.simulate()

#include "m5op.h"

m5_work_begin(id, 0);

// Region of interest

m5_work_end(id, 0);

• Work item handling in Python

• Exit event will contain

information about work items

• Include the m5op header

• Remember to link with libm5.a

• Annotate your regions of

interest

© ARM 2017 32

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Exit Events

event.getCause() event.getCode() Description

user interrupt received - User pressed Ctrl+C

simulate() limit reached - gem5 reached the specified

time limit

m5_exit instruction

encountered

Exit code from guest Guest executed m5_exit()

m5_fail instruction

encountered

Failure code from guest Guest executed m5_fail()

checkpoint - Guest executed

m5_checkpoint()

workbegin/workend Work item ID Guest work item annotation

© ARM 2017 33

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Dumping statistics

 Can be requested from Python:

 m5.stats.dump(): Dump statistics

 m5.stats.reset(): Reset stat counters

 Guest command line:
 m5 dumpstats [[delay] [period]]

 m5 dumpresetstas [[delay] [period]]

 Guest code using libm5.a:

 m5_dump_stats(delay, periodicity): Dump statistics

 m5_dumpreset_stats(delay, periodicity): Dump & reset statistics

© ARM 2017 34

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Examples

 Simple full system configuration file: ARM big.LITTLE configuration example

 configs/example/arm/{fs_bigLittle.py, devices.py}

 Demonstrates how to setup a single system

 Reasonably small and well documented

 Distributed multi-system configuration:

 configs/example/arm/dist_bigLittle.py

 Reuses the configuration file above

 Simple syscall emulation mode example: Jason Lowe-Power’s Learning gem5

 configs/learning_gem5/part1

© ARM 2017

Debugging

William Wang

© ARM 2017 36

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Debugging Facilities

 Tracing

 Instruction tracing

 Diffing traces

 Using gdb to debug gem5

 Debugging C++ and gdb-callable functions

 Remote debugging

 Pipeline viewer

© ARM 2017 37

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Tracing/Debugging

 printf() is a nice debugging tool
 Keep good print statements in code and selectively enable them

 Lots of debug output can be a very good thing when a problem arises

 Use DPRINTFs in code

 DPRINTF(TLB, "Inserting entry into TLB with pfn:%#x…)

 Example flags:
 Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAll

 Print out all flags with ./build/ARM/gem5.opt -- debug-help

 Enabled on the command line
 --debug-flags=Exec

 --debug-start=30000

 --debug-file=my_trace.out

 Enable the flag Exec; Start at tick 30000; Write to my_trace.out

© ARM 2017 38

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Sample Run with Debugging

22:44:28 [/work/gem5] ./build/ARM/gem5.opt --debug-flags=Decode --

debug-start=50000-- debug-file=my_trace.out configs/example/se.py -c

tests/test-progs/hello/bin/arm/linux/hello

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Hello world!

Exiting @ tick 3107500 because target called exit()

Command Line:

my_trace.out:

2:44:47 [/work/gem5] head m5out/my_trace.out

50000: system.cpu: Decode: Decoded cmps instruction: 0xe353001e

50500: system.cpu: Decode: Decoded ldr instruction: 0x979ff103

51000: system.cpu: Decode: Decoded ldr instruction: 0xe5107004

51500: system.cpu: Decode: Decoded ldr instruction: 0xe4903008

52000: system.cpu: Decode: Decoded addi_uop instruction: 0xe4903008

52500: system.cpu: Decode: Decoded cmps instruction: 0xe3530000

53000: system.cpu: Decode: Decoded b instruction: 0x1affff84

53500: system.cpu: Decode: Decoded sub instruction: 0xe2433003

54000: system.cpu: Decode: Decoded cmps instruction: 0xe353001e

54500: system.cpu: Decode: Decoded ldr instruction: 0x979ff103

© ARM 2017 39

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Adding Your Own Flag

 Print statements put in source code

 Encourage you to add ones to your models or contribute ones you find particularly useful

 Macros remove them from the gem5.fast binary

 There is no performance penalty for adding them

 To enable them you need to run gem5.opt or gem5.debug

 Adding one with an existing flag
 DPRINTF(<flag>, “normal printf %s\n”, “arguments”);

 To add a new flag add the following in a Sconscript
 DebugFlag(‘MyNewFlag’)

 Include corresponding header, e.g. #include “debug/MyNewFlag.hh”

© ARM 2017 40

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Instruction Tracing

 Separate from the general debug/trace facility

 But both are enabled the same way

 Per-instruction records populated as instruction executes

 Start with PC and mnemonic

 Add argument and result values as they become known

 Printed to trace when instruction completes

 Flags for printing cycle, symbolic addresses, etc.

2:44:47 [/work/gem5] head m5out/my_trace.out

50000: T0 : 0x14468 : cmps r3, #30 : IntAlu : D=0x00000000

50500: T0 : 0x1446c : ldrls pc, [pc, r3 LSL #2] : MemRead : D=0x00014640 A=0x14480

51000: T0 : 0x14640 : ldr r7, [r0, #-4] : MemRead : D=0x00001000 A=0xbeffff0c

51500: T0 : 0x14644.0 : ldr r3, [r0] #8 : MemRead : D=0x00000011 A=0xbeffff10

52000: T0 : 0x14644.1 : addi_uop r0, r0, #8 : IntAlu : D=0xbeffff18

52500: T0 : 0x14648 : cmps r3, #0 : IntAlu : D=0x00000001

53000: T0 : 0x1464c : bne : IntAlu :

© ARM 2017 41

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5

 Several gem5 functions are designed to be called from GDB

 schedBreakCycle() – also with --debug-break

 setDebugFlag()/clearDebugFlag()

 dumpDebugStatus()

 eventqDump()

 SimObject::find()

 takeCheckpoint()

© ARM 2017 42

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5
2:44:47 [/work/gem5] gdb --args ./build/ARM/gem5.opt

configs/example/fs.py

GNU gdb Fedora (6.8-37.el5)

...(gdb) b main

Breakpoint 1 at 0x4090b0: file build/ARM/sim/main.cc, line 40.

(gdb) run

Breakpoint 1, main (argc=2, argv=0x7fffa59725f8) at

build/ARM/sim/main.cc

main(int argc, char **argv)

(gdb) call schedBreakCycle(1000000)

(gdb) continue

Continuing.

gem5 Simulator System

...

0: system.remote_gdb.listener: listening for remote gdb #0 on

port 7000

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6

© ARM 2017 43

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5
(gdb) p _curTick

$1 = 1000000

(gdb) call setDebugFlag("Exec")

(gdb) call schedBreakCycle(1001000)

(gdb) continue

Continuing.

1000000: system.cpu T0 : @_stext+148. 1 : addi_uop r0, r0, #4 : IntAlu

: D=0x00004c30

1000500: system.cpu T0 : @_stext+152 : teqs r0, r6 : IntAlu :

D=0x00000000

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6
(gdb) print SimObject::find("system.cpu")

$2 = (SimObject *) 0x19cba130

(gdb) print (BaseCPU*)SimObject::find("system.cpu")

$3 = (BaseCPU *) 0x19cba130

(gdb) p $3->instCnt

$4 = 431

© ARM 2017 44

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Diffing Traces

 Often useful to compare traces from two simulations
 Find where known good and modified simulators diverge

 Standard diff only works on files (not pipes)

 …but you really don’t want to run the simulation to completion first

 util/rundiff

 Perl script for diffing two pipes on the fly

 util/tracediff

 Handy wrapper for using rundiff to compare gem5 outputs

 tracediff “a/gem5.opt|b/gem5.opt” –debug-flags=Exec

 Compares instructions traces from two builds of gem5

 See comments for details

© ARM 2017 45

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Advanced Trace Diffing

 Sometimes if you run into a nasty bug it’s hard to compare apples-to-apples traces

 Different cycles counts, different code paths from interrupts/timers

 Some mechanisms that can help:

 -ExecTicks don’t print out ticks

 -ExecKernel don’t print out kernel code

 -ExecUserdon’t print out user code

 ExecAsid print out ASID of currently running process

 State trace

 PTRACE program that runs binary on real system and compares cycle-by-cycle to gem5

 Supports ARM, x86, SPARC

 See wiki for more information [http://gem5.org/Trace_Based_Debugging]

© ARM 2017 46

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checker CPU

 Runs a complex CPU model such as the O3 model in tandem with a special

Atomic CPU model

 Checker re-executes and compares architectural state for each instruction

executed by complex model at commit

 Used to help determine where a complex model begins executing instructions

incorrectly in complex code

 Checker cannot be used to debug MP or SMT systems

 Checker cannot verify proper handling of interrupts

 Certain instructions must be marked unverifiable i.e. “wfi”

© ARM 2017 47

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Remote Debugging
./build/ARM/gem5.opt configs/example/fs.py

gem5 Simulator System

...

command line: ./build/ARM/gem5.opt configs/example/fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: /dist/binaries/vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_gdb.listener: listening for remote gdb #0 on

port 7000 info: Entering event queue @ 0. Starting

simulation...

© ARM 2017 48

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Remote Debugging
GNU gdb (Sourcery G++ Lite 2010.09-50) 7.2.50.20100908-cvs

Copyright (C) 2010 Free Software Foundation, Inc.

...

(gdb) symbol-file /dist/binaries/vmlinux.arm

Reading symbols from /dist/binaries/vmlinux.arm...done.

(gdb) set remote Z-packet on

(gdb) set tdesc filename arm-with-neon.xml

(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000

cache_init_objs (cachep=0xc7c00240, flags=3351249472) at

mm/slab.c:2658

(gdb) step

sighand_ctor (data=0xc7ead060) at kernel/fork.c:1467

(gdb) info registers

r0 0xc7ead060 -940912544

r1 0x5201312

r2 0xc002f1e4 -1073548828

r3 0xc7ead060 -940912544

r4 0x00

r5 0xc7ead020 -940912608

…

ARMv7 only, ARMv8 doesn’t need

© ARM 2017 50

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

O3 Pipeline Viewer
Use --debug-flags=O3PipeView and util/o3-pipeview.py

© ARM 2017

Adding new models

Andreas Sandberg

© ARM 2017 52

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How are models implemented

Python

wrappers

Parameter

structs
C++ model

Generates
Python

description

Describes parameters and

exported methods

Implements your model Includes

© ARM 2017 53

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How are models instantiated

C++ model

Python objectSimulation script
Python

wrappers

Parameter

struct

obj = MyObj() m5.instantiate()

MyObjParams::create()

Instantiate and populate

MyObjParams

© ARM 2017 54

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Discrete event based simulation

 Discrete: Handles time in discrete steps

 Each step is a tick

 Usually 1THz in gem5

 Simulator skips to the next event on the timeline

Time

Event handler

Event handlerMyObj::startup()
Schedule

Call

© ARM 2017 55

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a SimObject

 Derive Python class from Python SimObject

 Define parameters, ports and configuration

 Parameters in Python are automatically turned into C++ struct and passed to C++ object

 Add Python file to SConscript

 Or, place it in an existing Python file

 Derive C++ class from C++ SimObject

 Defines the simulation behavior

 See src/sim/sim_object.{cc,hh}

 Add C++ filename to SConscript in directory of new object

 Need to make sure you have a create factory method for the object

 Look at the bottom of an existing object for info

 Recompile

© ARM 2017 56

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimObject initialization

Instantiation

• Uses a factory method:
MyObjectParams::create()

Register stats

• MyObject::regStats()

Initialize architectural
state

• MyObject::initState()

Reset stats

• MyObject::resetStats()

Start model

• MyObject::startup()

© ARM 2017 57

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Parameters and SimObjects

 Parameters to SimObjects are synthesized from Python structures

 Object hierarchy in Python reflects the C++ world

 This example is from src/dev/arm/Realview.py

class Pl011(Uart):

type = 'Pl011'

cxx_header = "dev/arm/pl011.hh"

gic = Param.Gic(Parent.any, "Gic to use for interrupting")

int_num = Param.UInt32("Interrupt number that connects to GIC")

end_on_eot = Param.Bool(False, "End the simulation when …")

int_delay = Param.Latency("100ns", "Time between action …")

Python class name Python base class

C++ class

Parameter type

Default value

Parameter DescriptionParameter name

C++ header

© ARM 2017 58

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimObject Parameters

 Parameters can be:

 Scalars – Param.Unsigned(5), Param.Float(5.0), Param.UInt32(42), …

 Arrays – VectorParam.Unsigned([1,1,2,3])

 SimObjects – Param.PhysicalMemory(…)

 Arrays of SimObjects –VectorParam.PhysicalMemory(Parent.any)

 Memory address ranges– Param. AddrRange(0,Addr.max))

 Normally converted from strings with units :

 Latency – Param.Latency(’15ns’) Tick

 Frequency – Param.Frequency(‘100MHz’) -> Tick

 MemorySize – Param.MemorySize(‘1GB’) -> Bytes

 Time – Param.Time(‘Mon Mar 25 09:00:00 CST 2012’)

 Ethernet Address – Param.EthernetAddr(“90:00:AC:42:45:00”)

© ARM 2017 59

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Auto-generated Header file
#ifndef __PARAMS__Pl011__

#define __PARAMS__Pl011__

class Pl011;

#include <cstddef>

#include "base/types.hh”

#include "params/Gic.hh"

##include "base/types.hh"

#include "params/Uart.hh"

struct Pl011Params

: public UartParams

{

Pl011 * create();

uint32_t int_num;

Gic * gic;

bool end_on_eot;

Tick int_delay;

};

#endif // __PARAMS__Pl011__

class Pl011(Uart):

type = 'Pl011'

gic = Param.Gic(Parent.any, …)

int_num = Param.UInt32(…)

end_on_eot = Param.Bool(False, "End …)

int_delay = Param.Latency("100ns", "Time …")

Factory method

© ARM 2017 60

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How Parameters are used in C++

Pl011::Pl011(const Pl011Params *p)

: Uart(p), …,

intNum(p->int_num), gic(p->gic),

endOnEOT(p->end_on_eot), intDelay(p->int_delay)

{

…

}

You can also access parameters through params() accessor after instantiation.

src/dev/arm/pl011.cc:

© ARM 2017 61

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating/Using Events

 One of the most common things in an event driven simulator is

scheduling events

 Declaring events and handlers is easy:

 Scheduling them is easy too:

/* Handle when a timer event occurs */

void timerHappened();

EventWrapper<MyClass, &MyClass::timerHappend> event;

/* something that requires me to schedule an event at time t*/

if (event.scheduled())

reschedule(event, curTick() + t);

else

schedule(event, curTick() + t);

© ARM 2017 62

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checkpointing SimObject State

 If your object has state, that needs to be written to the checkpoint

 Checkpointing takes place on a drained simulator

 Draining ensures that microarchitectural state is flushed

 Models may need to flush pipelines and wait for outstanding requests to finish.

 Checkpoint implemented by overriding
SimObject::serialize(CheckpointOut &)

 Save necessary state

 No need to store parameters from the config systyem!

 Use SERIALIZE_*() macros or paramOut

 To implement restore, override
SimObject::unserialize(CheckpointIn &)

 Use UNSERIALIZE_*() macros or paramIn

© ARM 2017 63

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a checkpoint

Trigger checkpointing

• Script call:
m5.checkpoint(“my.cpt”)

Drain the simulator

• Ensures a well-defined
architectural state

• Flushes CPU pipelines

• Writes back caches

Serialize objects

• MyObject::serialize(
CheckpointOut&)

Resume simulation

• Script call:
m5.simulate()

Resume drained objects

• MyObject::drainResume()

© ARM 2017 64

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Restoring from a checkpoint

Instantiation

• Uses a factory method:
MyObjectParams::create()

Register stats

• MyObject::regStats()

Restore architectural
state

• MyObject::unserialize(
CheckpointIn&)

Reset stats

• MyObject::resetStats()

Start model

• MyObject::startup()

Resume system

• MyObject::drainResume()

© ARM 2017 65

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Draining

Script requests draining

All objects

drained

Call SimObject::drain()

Done

No

Yes

Simulate until

signalDrainDone()

• Flush internal state

• Stop producing new

messages

© ARM 2017 66

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checkpointing Example

// uint16_t control;

void

Pl011::serialize(CheckpointOut &cp) const

{

SERIALIZE_SCALAR(control);

}

void

Pl011::unserialize(CheckpointIn &cp)

{

UNSERIALIZE_SCALAR(control);

}

© ARM 2017 67

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Good Examples

 Simple IO devices: IsaFake

 See: src/dev/isa_fake.{cc,hh} and src/dev/Device.py

 Demonstrates a basic memory-mapped device using the BasicPioDevice base class

 PCI devices: PciVirtIO

 See: src/dev/virtio/pci.{cc,hh} and src/dev/VirtIO.py

 PCI device with a single BAR and interrupts

 More complex PCI device: CopyEngine

 See: src/dev/pci/copy_engine.{cc,hh} and src/dev/pci/CopyEngine.py

 PCI device with DMA support

 Python exports: PowerModelState

 See: src/sim/power/PowerModelState.py

 Exports two methods (getDynamicPower & getStaticPower) to Python

© ARM 2017 68

Text 54pt sentence case <Insert coffee break here>

© ARM 2017

Memory System

Stephan Diestelhorst

© ARM 2017 70

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Goals

 Model a system with heterogeneous applications, running on a set of

heterogeneous processing engines, using heterogeneous memories and

interconnect
 CPU centric: capture memory system behaviour accurate enough

 Memory centric: Investigate memory subsystem and interconnect architectures

Interconnect

Processo

r
Processo

r
Processo

rCPU

Video

backend

Video

decoder
GPUGPU

GPU
GPU

DMA

DRAMDRAM
DRAM

3D-

DRAMSRAM NAND
NAND

PCM STT-RAM

Interconnect

© ARM 2017 71

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Goals, contd.

 Two worlds...

 Computation-centric simulation

 e.g. SimpleScalar, Asim etc

 More behaviourally oriented, with ad-hoc ways of describing parallel behaviours and

intercommunication

 Communication-centric simulation

 e.g. SystemC+TLM2 (IEEE standard)

 More structurally oriented, with parallelism and interoperability as a key component

 gem5 is trying to balance

 Easy to extend (flexible)

 Easy to understand (well defined)

 Fast enough (to run full-system simulation at MIPS)

 Accurate enough (to draw the right conclusions)

© ARM 2017 72

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Event Simulation

 Event-driven

 no activity -> no clocking

 event queue

 Deterministic

 fixed random number seed

 no dependence on host addresses

 Multi-Queue

 multiple workers

event queue

cache lookup

ti
m

e

curTick

cache

response

Cache Model

© ARM 2017 73

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Ports, Masters and Slaves

 MemObjects are connected through master and slave ports

 A master module has at least one master port, a slave module at least one slave

port, and an interconnect module at least one of each

 A master port always connects to a slave port

 Similar to TLM-2 notation

CPU

memory0

bus

memory1

Master

module

Interconnect

module

Slave

module

Slave portMaster port

I$

D

$

© ARM 2017 74

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Transport interfaces

 Atomic

 Similar to loosely timed in TLM

 Blocking: Requests completes in a single call chain

 Each component along the way adds latency to the request

 Timing

 Similar to approximately timed in TLM

 Asynchronous: One call to send a packet, callback when response is ready.

 Functional

 Debug interface that doesn’t affect coherency states.

 Blocking: Requests complete within a single call chain.

The Atomic and Timing

interfaces are mutually

exclusive

© ARM 2017 75

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Communication Monitor

 Insert as a structural component where stats are desired
memmonitor = CommMonitor()

membus.master = memmonitor.slave

memmonitor.master = memctrl.slave

 A wide range of communication stats

 bandwidth, latency, inter-transaction (read/write) time, outstanding transactions, address

heatmap, etc

 Provides an attachment point for communication probes:

 Tracing (using protobuf)

 Stack distance monitoring

 Footprint estimation

0
10
20
30
40
50
60
70

D
is

tr
ib

u
ti
o
n
 (

%
)

Latency (ns)

Latency distribution

© ARM 2017 76

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Traffic generator

 Test scenarios for memory system regression and performance validation

 High-level of control for scenario creation

 Black-box models for components that are not yet modeled

 Video/baseband/accelerator for memory-system loading

 Inject requests based on (probabilistic) state-transition diagrams

 Idle, random, linear and trace replay states

idle

linear

Address

Time

linear linear linearidle idle

© ARM 2017 77

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Memory controllers

 All memories in the system inherit from AbstractMemory

 Basic single-channel memory controller

 Instantiate multiple times if required

 Interleaving support added in the bus/crossbar (to be posted)

 SimpleMemory

 Fixed latency (possibly with a variance)

 Fixed throughput (request throttling without buffering)

 SimpleDRAM

 High-level configurable DRAM controller model to mimic DDRx, LPDDRx, WideIO, HBM etc

 Memory organization: ranks, banks, row-buffer size

 Controller architecture: Read/write buffers, open/close page, mapping, scheduling policy

 Key timing constraints: tRCD, tCL, tRP, tBURST, tRFC, tREFI, tTAW/tFAW

© ARM 2017 78

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top-down controller model

 Don’t model the actual DRAM, only the timing constraints

 DDR3/4, LPDDR2/3/4, WIO1/2, GDDR5, HBM, HMC, even PCM

 See src/mem/DRAMCtrl.py and src/mem/dram_ctrl.{hh, cc}

DRAM Memory Controller

S
y
s
te

m
 in

te
rfa

c
e

s

write queue

read queue

P
a

g
e

 p
o

lic
y
 &

 a
rb

itra
tio

n

P
H

Y
 &

 tim
in

g
 c

o
n

s
tra

in
ts

Device width

Burst length

#ranks, #banks

Page size

tRCD

tCL

tRP

tRAS

tBURST

tRFC & tRFEI

tWTR

tRRD

tFAW/tTAW

…

Hansson et al, Simulating DRAM controllers for future system architecture exploration, ISPASS’14

© ARM 2017 79

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Controller model correlation

 Comparing with a real memory controller

 Synthetic traffic sweeping bytes per activate and number of banks

 See configs/dram/sweep.py and util/dram_sweep_plot.py

gem5 model Real memory controller

64
128

192
256

0

20

40

60

80

100

8
7

6
5

4
3

2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks Bytes per

Activate
64

128

192
256

0

20

40

60

80

100

8
7

6
5

4
3

2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks
Bytes per

Activate

© ARM 2017 80

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 DRAM accounts for a large portion of system power

 Need to capture power states, and system impact

 Integrated model opens up for developing more clever strategies

 DRAMPower adapted and adopted for gem5 use-case

DRAM power modeling

• Active Energy

• Precharge Energy

• Read/Write Energy

• Background Energy

• Refresh Energy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

AndeBench

bbench

GPU-AngryBirds

Energy Saving due to Power-Down (%)

Energy Saving due to

Power-Down (%)

64%

36%

Static Energy(mJ)

Dynamic Energy(mJ)

BBench DRAM Energy Analysis (LPDDR3 x32)

Naji et al, A High-Level DRAM Timing, Power and Area Exploration Tool, SAMOS’15

© ARM 2017 81

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Multi-channel memory support is essential

 Emerging DRAM standards are multi-channel by nature

(LPDDR4, WIO1/2, HBM1/2, HMC)

 Interleaving support added to address range

 Understood by memory controller and interconnect

 See src/base/addr_range.hh for matching and

src/mem/xbar.{hh, cc} for actual usage

 Interleaving not visible in checkpoints

 XOR-based hashing to avoid imbalances

 Simple yet effective, and widely published

 See configs/common/MemConfig.py for system configuration

Address interleaving

Source: Micron

© ARM 2017 82

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Crossbars& Bridges

 Create rich system interconnect topologies using

a simple bus model and bus bridge

 Crossbars do address decoding and arbitration

 Distributes snoops and aggregates snoop responses

 Routes responses

 Configurable width and clock speed

 Bridges connects two buses

 Queues requests and forwards them

 Configurable amount of queuing space for requests and

responses

XBar

Core

L1i L1d

XBar

L2

L1i L1d

XBar

Core

...

XBar

XBar XBarBridge

© ARM 2017 83

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Caches

 Single cache model with several components:

 Cache: request processing, miss handling, coherence

 Tags: data storage and replacement (LRU, Random, etc.)

 Prefetcher: N-Block Ahead, Tagged Prefetching, Stride

Prefetching

 MSHR & MSHRQueue: track pending/outstanding

requests

 Also used for write buffer

 Parameters: size, hit latency, block size, associativity,

number of MSHRs (max outstanding requests)

Data

Tags

Cache

Prefetch

MSHR

© ARM 2017 84

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Coherence protocol

 MOESI bus-based snooping protocol

 Support nearly arbitrary multi-level hierarchies at the expense of some realism

 Does not enforce inclusion

 Magic “express snoops” propagate upward in zero time

 Avoid complex race conditions when snoops get delayed

 Timing is similar to some real-world configurations

 L2 keeps copies of all L1 tags

 L2 and L1s snooped in parallel

© ARM 2017 85

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Broadcast-based coherence protocol

 Incurs performance and power cost

 Does not reflect realistic implementations

 Snoop filter goes one step towards directories

 Track sharers, based on writeback and clean eviction

 Direct snoops and benefit from locality

 Many possible implementations

 Currently ideal (infinite), no back invalidations

 Can be used with coherent crossbars on any level

 See src/mem/SnoopFilter.py and

src/mem/snoop_filter.{hh, cc}*

Snoop (probe) filtering

Source: AMD

© ARM 2017 86

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Check adherence to consistency model

 Notion of functional reference memory is too simplistic

 Need to track valid values according to consistency

model

 Memory checker and monitors

 Tracking in src/mem/MemChecker.py and

src/mem/mem_checker.{hh, cc}

 Probing in src/mem/mem_checker_monitor.{hh, cc}

 Revamped testing

 Complex cache (tree) hierarchies in configs/examples/{memtest, memcheck}.py

 Randomly generated soak test in util/memtest-soak.py

 For any changes to the memory system, please use these

Memory system verification

L2

MemChecker

Core 1

Monitor

L1

XBar

Core 0

Monitor

L1

Core 2

Monitor

L1

© ARM 2017 87

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Ruby for Networks and Coherence

 As an alternative to its native memory system gem5 also integrates Ruby

 Create networked interconnects based on domain-specific language (SLICC) for

coherence protocols

 Detailed statistics

 e.g., Request size/type distribution, state transition frequencies, etc...

 Detailed component simulation

 Network (fixed/flexible pipeline and simple)

 Caches (Pluggable replacement policies)

 Supports Alpha and x86

 Limited ARM support about to be added

 Limited support for functional accesses

© ARM 2017 88

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Instantiating and Connecting Objects

class BaseCPU(MemObject):

icache_port = MasterPort("Instruction Port")

dcache_port = MasterPort("Data Port")

…

class BaseCache(MemObject):

cpu_side = SlavePort("Port on side closer to CPU")

mem_side = MasterPort("Port on side closer to MEM")

...

class Bus(MemObject):

slave = VectorSlavePort("vector port for connecting masters")

master = VectorMasterPort("vector port for connecting slaves")

…

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.l2bus.slave

system.dcache.mem_side = system.l2bus.slave
Memory

CPU

I$ D$

Bus

© ARM 2017 89

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Requests & Packets

 Protocol stack based on Requests and Packets

 Uniform across all MemObjects (with the exception of Ruby)

 Aimed at modelling general memory-mapped interconnects

 A master module, e.g. a CPU, changes the state of a slave module, e.g. a memory through a

Request transported between master ports and slave ports using Packets

if (req_pkt->needsResponse()) {

req_pkt->makeResponse();

} else {

delete req_pkt;

}

...

Request req(addr, size, flags, masterId);

Packet* req_pkt = new Packet(req, MemCmd::ReadReq);

...

...

delete resp_pkt;

CPU memory

© ARM 2017 90

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Requests & Packets

 Requests contain information persistent throughout a transaction

 Virtual/physical addresses, size

 MasterID uniquely identifying the module initiating the request

 Stats/debug info: PC, CPU, and thread ID

 Requests are transported as Packets

 Command (ReadReq, WriteReq, ReadResp, etc.) (MemCmd)

 Address/size (may differ from request, e.g., block aligned cache miss)

 Pointer to request and pointer to data (if any)

 Source & destination port identifiers (relative to interconnect)

 Used for routing responses back to the master

 Always follow the same path

 SenderState opaque pointer

 Enables adding arbitrary information along packet path

© ARM 2017 91

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Functional transport interface

 On a master port we send a request packet using sendFunctional

 This in turn calls recvFunctional on the connected slave port

 For a specific slave port we implement the desired functionality by overloading recvFunctional

 Typically check internal (packet) buffers against request packet

 For a slave module, turn the request into a response (without altering state)

 For an interconnect module, forward the request through the appropriate master port using

sendFunctional

 Potentially after performing snoops by issuing sendFunctionalSnoop

CPU memory

masterPort.sendFunctional(pkt);

// packet is now a response

MySlavePort::recvFunctional(PacketPtr pkt)

{

...

© ARM 2017 92

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Atomic transport interface

 On a master port we send a request packet using sendAtomic

 This in turn calls recvAtomic on the connected slave port

 For a specific slave port we implement the desired functionality by overloading recvAtomic

 For a slave module, perform any state updates and turn the request into a response

 For an interconnect module, perform any state updates and forward the request through the

appropriate master port using sendAtomic

 Potentially after performing snoops by issuing sendAtomicSnoop

 Return an approximate latency

Tick latency = masterPort.sendAtomic(pkt);

// packet is now a response

MySlavePort::recvAtomic(PacketPtr pkt)

{

...

return latency;

}

CPU memory

© ARM 2017 93

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing transport interface

 On a master port we try to send a request packet using sendTimingReq

 This in turn calls recvTiming on the connected slave port

 For a specific slave port we implement the desired functionality by overloading recvTimingReq

 Perform state updates and potentially forward request packet

 For a slave module, typically schedule an action to send a response at a later time

 A slave port can choose not to accept a request packet by returning false

 The slave port later has to call sendRetryReq to alert the master port to try again

bool success = masterPort.sendTimingReq(pkt);

if (success) {

// request packet is sent

...

} else {

// failed, wait for recvReqRetry from slave port

...

}

MySlavePort::recvTimingReq(PacketPtr pkt)

{

assert(pkt->isRequest());

...

return true/false;

}

CPU memory

© ARM 2017 94

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing transport interface (cont’d)

 Responses follow a symmetric pattern in the opposite direction

 On a slave port we try to send a response packet using sendTiming

 This in turn calls recvTiming on the connected master port

 For a specific master port we implement the desired functionality by overloading recvTiming

 Perform state updates and potentially forward response packet

 For a master module, typically schedule a succeeding request

 A master port can choose not to accept a response packet by returning false

 The master port later has to call sendRetryResp to alert the slave port to try again

bool success = slavePort.sendTimingResp(pkt);

if (success) {

// response packet is sent

...

} else { ...

MyMasterPort::recvTimingResp(PacketPtr pkt)

{

assert(pkt->isResponse());

...

return true/false;

}

CPU memory

© ARM 2017

CPU Models

Andreas Sandberg

© ARM 2017 97

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

• Some timing

• Caches

• No BPs

• Fast

• Some timing

• Caches

• Limited BPs

• Fast

• Full timing

• Caches

• Branch predictors

• Slow

• No timing

• No caches

• No BP

• Really fast

CPU models overview

BaseCPU

BaseKvmCPU TraceCPUBaseSimpleCPU

AtomicSimpleCPU

TimingSimpleCPU

DerivO3CPU MinorCPU

X86KvmCPU

ArmV8KvmCPU

© ARM 2017 98

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Atomic Simple CPU

 On every CPU tick() perform all

operations for an instruction

 Memory accesses use atomic

methods

 Fastest functional simulation

 Except for KVM-accelerated CPUs

© ARM 2017 99

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing Simple CPU

 Memory accesses use timing path

 CPU waits until memory access

returns

 Fast, provides some level of timing

© ARM 2017 100

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Detailed CPU Models

 Parameterizable pipeline models w/SMT support

 Two Types

 MinorCPU – Parameterizable in-order pipeline model

 O3CPU – Parameterizable out-of-order pipeline model

 “Execute in Execute”, detailed modeling

 Roughly an order-of-magnitude slower than Simple

 Models the timing for each pipeline stage

 Forces both timing and execution of simulation to be accurate

 Important for Coherence, I/O, Multiprocessor Studies, etc

© ARM 2017 101

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

In-Order CPU Model

 Models a “standard” 4-stage pipeline

 Fetch1, Fetch2, Decode, Execute

 Key Resources

 Cache, Execution, BranchPredictor, etc.

 Pipeline stages

© ARM 2017 102

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Out-of-Order (O3) CPU Model

 Defaults to a 7-stage pipeline

 Fetch, Decode, Rename, Issue, Execute, Writeback, Commit

 Model varying amount of stages by changing the delay between them

 For example: fetchToDecodeDelay

 Key Resources

 Physical Registers, IQ, LSQ, ROB, Functional Units

© ARM 2017 103

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Important CPU interfaces

 BaseCPU

 Base class for all CPU models

 Provides a common interface for checkpointing/switching/interrupts/…

 Even used by KVM-based CPUs

 ThreadContext

 Interface for accessing total architectural state of a single thread (PC, registers, etc.)

 Holds pointers to important structures (TLB, CPU, etc.)

 CPU models typically implement custom versions or use SimpleThread

 ExecContext

 Abstract interface defining how an instruction interface with the CPU model

© ARM 2017 105

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

StaticInst

 Represents a decoded instruction

 Has classifications of the inst

 Corresponds to the binary machine inst

 Only has static information

 Has all the methods needed to execute an instruction

 Tells which regs are source and dest

 Contains the execute() function

 ISA parser generates execute() for all insts

© ARM 2017 106

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

DynInst

 Complex CPU models need to track resources used by instructions

 Dynamic version of StaticInst

 Used to hold extra information for in-flight instructions

 Holds PC, Results, Branch Prediction Status

 Interface for TLB translations

 Specialized versions for detailed CPU models

© ARM 2017 108

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Examples

 Virtualization-based CPU: BaseKvmCPU

 See: src/cpu/kvm/base.{cc,hh} and src/cpu/kvm/BaseKvmCPU.py

 Implements the basic interfaces required by all CPU model

 Reasonably small and well documented

 Does not simulate instructions or implement ExecContext

 Simplest possible simulated CPU: AtomicSimpleCPU

 See: src/cpu/simple/{base.cc,base.hh,atomic.cc,atomic.hh,

AtomicSimpleCPU.py}

 Minimal simulated CPU that includes SMT

 Simplest “real” model: MinorCPU

 See src/cpu/minor/*

 Implements a pipelined in-order CPU

© ARM 2017

Advanced Features &
Capabilities

© ARM 2017 110

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Switching modes
 (kvm +) functional + timing / detailed

 Checkpoints
 boot Linux -> checkpoint

 run multiple configurations in parallel

 run multiple checkpoints in parallel

 Multi-threading
 multiple queues

 multiple workers execute events

 data sharing and tight coupling limits speedup

 Multi-processed gem5
 for design space explorations

Accelerating gem5

© ARM 2017 111

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Host #1

Distributed gem5 simulation
Host #1

simulated

system

#1

Host #2

Host #3

Packet

forwarding

 gem5 running in parallel on a cluster of host machines

 Packet forwarding engine

 Forward packets among the simulated systems

 Synchronize the distributed simulation

 Simulate network topology

 Tested with ~30 nodes, 100s planned

gem5 process

host machine

simulated

system

#2

simulated

system

#3

© ARM 2017 112

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Object Diagram : Simulating a 2-node Cluster Example

simulated compute

node

TCPIface

SyncEvent SyncNode

simulated Ethernet switch

TCPIface

SyncEvent SyncSwitch

NSGigE

Root

EtherSwitch

TCPIface

Root

TCP socket

DistEtherLink DistEtherLink DistEtherLink

simulated compute

node

TCPIface

SyncEvent SyncNode

NSGigE

Root

DistEtherLink

TCP socket

© ARM 2017 113

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 High-level OOO core model

speedy simulation

 Capture data dependencies and MLP

 Elastic replay

 High-level synchronisation event

capture

 Predict scalability for SMPs

 Additional 10x speedup

Elastic Traces – fast, realistic memory exploration

0

2

4

6

0.8

0.9

1

1.1

Er
ro

r
(%

)

R
e

la
ti

ve
 C

P
I

(B) L2 size 1MB --> 2MB Mean error = 1.4%

5x-8x => ~1MIPS

© ARM 2017 114

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Address rising cost of communication

 Optimize data structures to improve cache utilization and efficiency

 Optimize data storage onto heterogeneous memories

Data Profiling and Heterogeneous Memory

© ARM 2017 115

Text 54pt sentence case Graphics & Android Andreas

© ARM 2017 116

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Common Approach: CPU-Centric
 Software renderer instead of a real GPU

 Optimization friendly code

 Can be vectorized

 Easy-to-predict branches

 Large memory foot print

 Doesn’t simulate the driver

 Known to be the bottleneck for some workloads

 Horrible code

 Workload and software renderer compete

for resources

 Can significantly skew core behavior

 Affects 2D applications and 3D

applications

CPU

L1D L1I

LPDDR3

GPU

Android

Workload

CPU

L1D

L2

L1I

Display

Controller

SW renderer

© ARM 2017 118

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Full system NoMali modelling

 Passes the duck test (almost)

 Most GPU integration tests work (no pixels)

 Implements the Mali register interface & interrupts

 Accurate CPU+GPU interactions

 Runs the full driver stack

 Complex software with significant CPU component

 Limitations:

 Doesn’t produce any display output

 No memory system interactions

 Requires a properly optimized driver stack

 Use cases:

 CPU-centric studies (driver performance)

 Fast-forward (boot / long traces)

CPU

L1D L1I

LPDDR3

NoMali

Android

Workload

CPU

L1D

L2

L1I

Display

Controller

GPU drivers

De Jong, Rene, and Andreas Sandberg. "NoMali: Simulating a Realistic Graphics Driver Stack Using a Stub GPU." ISPASS 2016

© ARM 2017 119

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why do you care?

0%

10%

20%

30%

40%

50%

Instructions IPC BP Miss Ratio DL1 Miss Ratio IL1 Miss Ratio L2 Miss Ratio DRAM Read BW

Relative Error

Software Rendering NoMali

103% 73% 135% 54%

bbench on Android K (real GPU as reference)

© ARM 2017 121

Text 54pt sentence case Power Modelling Stephan

© ARM 2017 122

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 bottom-up

 simulate gates

 toggle rates

 complex aggregation

 top-down

 high level activities

 few voltage rails

 measure real devices

+

SOC
-

Hot

Cold

Power Models

C
o

re

C
o
re

L
2

C

C

C

C

L2

DRAM

G

G

G

G

L2

Acc

Acc

Acc

Acc

Interconnect

BX
IQ

Reg
Read

Mux BR

SX0
IQ

Reg
Read

Mux ALU

SX1
IQ

Reg
Read

Mux ALU

MX
IQ

Reg
Read

Mux

ALU PLUS

IMAC

CRC32

IDIV

Other

16 uops

12 uops

12 uops

12 uops

MCQ
RCQ

128 insts

retire

64b

64b

64b

64b

64b

64b

64b

ResRen

Ren

Ren

Ren

Dec

Dec

Dec

Dec

De
co

de
 Q

Al
ig

n/
St

ee
r

Fe
tc

h
QIC

Tags

ITLB

Main
BTB

Main
GHBs

uBTB

M
ai

n
Pr

edSe
tu

p

IC
Read
128b

I0 I1 I2

Fetch Decode / Rename

Commit

Branch Execute

Integer Execute

Issue

12 P-blks

96 regs
32 branches

32 stores
64 loads

4 inst 4 uop

16x32b insts

P1 P2 F1 F2 DE RR

E1 E2 E3

B1

nBTB

Inst
Align

Inst
Align

Inst
Align

Inst
Align

IA

V-FMUL

V-FADD

V-IMAC

V-FDIV

CRYPTO2 CRYPTO4

V-ALU

V-FMUL

V-FADD

V-FCVT

V-ALU PLUS

Vector Execute

V1 V2 V3 V4

16 uops

LS0
IQ

Reg
Read

Mux

LS1
IQ

Reg
Read

Mux

12 uops

12 uops

AGEN DTLB

Setup
DC

Tags
DC

Read
FMT

AGEN DTLB

Setup
DC

Tags
DC

Read
FMT

128b

128b

D1 D2 D3 D4

Load & Store

IQ
Read

Reg
Read

Mux
VX0
IQ

I0 I1 I2 I3

IQ
Read

Reg
Read

Mux

16 uops

VX1
IQ

128b

128b

128b

128b

128b

128b

128b

128b

128b

128b

Rt/Arb Tag
Rt/

Cmp
Data1 256b

L2

Data2
Rt/

Mux

M1 M2 M3 M4 M5 M6

Ileak

Iswitch
N+ N+

Psub

Source Gate Drain

ISUB

IGIDLIGATE IREV

D
e
co

m
p
o
se

A
gg

re
ga

te

© ARM 2017 123

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top Down vs. Bottom Up

Top-down also has uses in design-space exploration – accurate reference

© ARM 2017 124

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top Down Power Models

 Built experimentally

 Often uses regression

 Extremely accurate

 Inflexible, often tied to a specific platform

© ARM 2017 125

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bottom Up Power Models

 Built on theory

 E.g. McPAT – Power Area and Timing Multi- and Many- core modelling framework

 Good for design-space exploration

 Large errors (largely due to abstraction)

 Relatively slow (not suitable for run-time management)

© ARM 2017 126

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Power Modeling Based on Existing Hardware

ODROID-XU3

Exynos-5422

4x Cortex-A7

4x Cortex-A15

3. Choose PMCs:

Hierarchical cluster

analysis, correlation matrix

analysis, exhaustive search

etc.

1. Run: workloads

@ different DVFS level

@ different affinities

60 workloads used:

MiBench, MediaBench,

LMbench, NEON, OpenMP

6. Uses

• OS run-time

management

• Reference for research

• gem5 add-on

4. Build Model

• OLS multiple linear regression

• Deals with PMC multicollinearity

• Considers heteroscedasticity

2. Record:

• Performance Counters (PMCS)

• Voltage, Power

5. Validate

• K-fold cross validation

• R2: ~0.99

• 3-6% Av. Error

© ARM 2017 127

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Power&Energy Framework Overview

Derive

Power/Energy (PE) Model
(IP Characterization or otherwise)

Express PE Model

in gem5 fitting form

P&E Model Database

(Use model generator scripts

to create equivalent *.json)

Gem5 Simulation Env.PE Model Generation Env.

P&E Estimator
(Generate P&E Stats Equation)

System Controller

(Extendable)

Runtime Statistics:

Voltage, Freq, Power State,

Event Count

Clocks,

Clock Domains

Voltage Domains

Generic

DVFS

Handler

Power States**:

Definition & Migration

Ongoing activities within P&E framework

- DVFS Control Registers
- Energy Monitoring Registers**

- Temperature Monitor**

Low-level Drivers

Device Tree
Define clock domains

and associate them

with devices

CPUFreq DEVFreq CPUIdle

OSPM Policies

CPUFreq Driver

High level Drivers

** Needs to be spec’ed out

S/W Power Management Env.

© ARM 2017 128

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why are CPU power models important?

 Design space exploration

 To see the effect of making architectural changes

 Run-time management

 CPU employs power-saving techniques (DVFS, DPM, asymmetric multi-core e.g. ARM

big.LITTLE)

 Need accurate power estimations to make performance-power trade-off

© ARM 2017 129

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Enable Power Modelling in gem5

 configs/example/arm/fs_power.py

 dyn = "voltage * (2 * ipc + 3 * 0.000000001 *

dcache.overall_misses / sim_seconds)”

 st = "4 * temp"

 gem5.opt configs/example/arm/fs_power.py \

--caches --kernel vmlinux

 grep pm0.dynamic_power m5out/stats.txt

 system.bigCluster.cpus.power_model.pm0.dynamic_power 0.057501 #Dynamic power for

this object (Watts)

 ...

© ARM 2017 130

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

And it wiggles!

© ARM 2017 131

Text 54pt sentence case KVM
Andreas

© ARM 2017 132

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Detailed

0.1 MIPS

Fast

1 MIPS

Native

3,000 MIPS

Problem: Simulation is Slow

~1 year / benchmark

in detailed mode

<1 hour per SPEC

benchmark on

native HW

SPEC CPU2006 runtime

© ARM 2017 133

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

A KVM-Based CPU Model

Can switch between modes during simulation

KVM

~90% of

native

Hardware CPU via virtualization

• Only simulates IO devices

• No/Limited timing

Detailed

~0.1 MIPS

Detailed: Pipeline simulator (timing, queues, speculation…)

• caches, TLBs, branch predictor

Fast

~1 MIPS

Fast: 1 instruction per cycle

• caches, TLBs, branch predictor

Simulation

Modes

© ARM 2017 134

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Current state of KVM on ARM

 Requirements

 Server-class ARMv8-based system

 RAM: 4+ GiB

 Host system and kernel with KVM support

 Known-working:

 Running full-systems with simulated devices

 Able to boot Android N

 Limited-support:

 Multiple CPUs

 Graphics, KMI

 CPU switching

 Checkpointing

Already in use despite

known limitations

© ARM 2017 135

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How Do I Use KVM?

 Supported by config/example/fs.py and config/example/arm/fs_bigLITTLE.py

 Only the bL configuration supports multi-core!

 Behaves like a “normal” CPU model

./build/ARM/gem5.opt \

configs/example/arm/fs_bigLITTLE.py

--cpu-type kvm \

--kernel vmlinux --disk my_disk.img \

--big-cpus 1 --little-cpus 0 \

--dtb

$GEM5/system/arm/dt/armv8_gem5_v1_1cpu.dtb

© ARM 2017 136

Text 54pt sentence case Demo

© ARM 2017 137

Text 54pt sentence case Methodology
William

© ARM 2017 138

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimPoints
 Generate wieldable, representative slices of full benchmarks

 Terminology:

 Intervals – slices in time, sampling granularity (e.g. 10K instructions)

 Phases – intervals with similar behavior that often recur periodically

 Output from SimPoint analysis are slices and weights for each slice (choose a clustering

within 5% of CPI of full run)

 Gem5 is instrumented to capture SimPoints

 Run one time to analyze basic block vectors

 Second time generates gem5 checkpoints at every identified phase

 Runs can be repeated with different experimental configuration

Time (Intervals)
1 2 3 4 5

IP
C

A BA A B

gzip gcc

© ARM 2017 139

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Find the most important parameters from a large data set automatically

 How to describe “most important” using math?

 High variance

 How do we represent our data so that the most important features can be extracted easily?

 Change of basis

 Can infer similarities and dissimilarities of workloads

 Based on distance on projected component space

Principal Component Analysis (PCA)

PCA reveals the internal structure of the data that

best explains the variance in the data!

© ARM 2017 140

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Android workloads

stress the Instruction-

side aspects of a system

 The popular SPEC

benchmarks primarily

stress only the Data-

side

 Very limited coverage of

full mobile systems’

behavior

Studying Complex Software is Important

andebench

angrybirds

bbench

caffeinemark

rlbench

wps

-6

-4

-2

0

2

4

6

8

-4 -2 0 2 4 6 8 10 12

Android

specInt2000Ref

specInt2006Ref

specFp2000Ref

specFp2006Ref

181_mcf

429_mcf

471_omnetpp

483_xalancbmk

433_milc

179_art1/2

200_sixtrack

470_lbm

400_perlbench

253_perlbmk
252_eon

450_soplex

445_gobmk

172_mgrid

183_equake

473_astar

403_gcc

X-axis (PC1) key components:

CPI, DTLB MPKI, L2 MPKI, L1-D MPKI,

IQ_full_events, …

Y-axis (PC2) key

components:

L1-I MPKI, ITLB MPKI, BP

MPKI, Inst mix, …

Principal Components of SPEC and Android

Workloads

© ARM 2017 141

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Fractional Factorial Designs

 Balanced experiment distribution

 Identify important factors

 2N-M experiments << 2N

DL1 Lat DL1

Size

DL1

Assoc

- - -

+ - +

- + +

+ + -

D
L
1
 A

ss
o
c

--- +--

-+-

-++ +++

--+

++-

+-+

DL1 Lat

DL1 Lat DL1

Size

DL1

Assoc

- - -

+ - -

- + -

- - +

 Looks for parameters where the average ‘+’ run is

very different from ‘-’

 Experiments are tolerant to noise

 Does not identify what are the best options

 Narrows design space to what matters most

© ARM 2017 142

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Methodology

 Objective: To find the ideal heterogeneous system for a given

set of workloads and hardware parameters

 Characterize and cluster workload phases

 Cluster based on performance sensitivity to various hardware

parameters

 Selectively enable or disable hardware parameters per cluster

of similar workload phases to improve their efficiency

Characterization

Workloads

Clustering

based on Similar

Characteristics

Identification of ideal H/W

config per core type

Evaluation of

Heterogeneous Systems

Optimal Systems

Characterization

© ARM 2017 143

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 300x speedup of our simulations

 Good correlation to full runs for statistics of interest

 Identifies unique phases of software behavior

Characterization Methodology

AutoGUI

SimPoints

PCA

Fractional

Factorial

Workloads

Reduced Detailed

Simulation

Characterization

Full Run SimPoint Run

 Record and deterministically playback

GUI interactions

andebench

angrybirds

bbench

caffeinemark

rlbench

wps

-6

-4

-2

0

2

4

6

8

-4 -2 0 2 4 6 8 10 12

Android

specInt2000Ref

specInt2006Ref

specFp2000Ref

specFp2006Ref

 Quickly and automatically expose

differences in elements of a large data

set

 Compare and contrast phase behavior
 Perform high-level coverage architectural

exploration using a limited set of experiments

© ARM 2017 144

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Characterization Methodology

Characterization

Comprehensive

Characterization

Tractable Simulation

AutoGUI

SimPoints

PCA

Fractional

Factorial

Workloads

Reduced Detailed

Simulation

Repeatable

Simulation

Reduced

Simulation Time

Guided

Parameter Selection

Reduced # of

Experiments

Full Runs for

Correlations

Key Phase

Identification

Workload

Comparison

Phase

Comparison

Sensitivity

Analysis

Sunwoo, et al. “A Structured Approach to the Simulation, Analysis and Characterization of Smartphone Applications.”

Published at IISWC 2013.

© ARM 2017

How to Contribute to gem5

Andreas Sandberg

© ARM 2017 147

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Prerequisites

 gem5’s is distributed under a 3-clause BSD license

 See LICENSE in the repository

 New code must have this license as well!

 It’s your responsibility to:

 Ensure that your contribution is covered by the license.

 Ensure that you have the right to submit the code

 Ensure that the right copyright notices are in place

© ARM 2017 148

Text 54pt sentence case Best practice
“How to operate your friendly reviewer”

© ARM 2017 149

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How to structure your change

 What characterizes a good change?

 Small: Smaller changes are easier to review and understand.

 Well-defined: One commit == logical change

 No unrelated changes: Don’t sneak bug fixes into feature commits

 Descriptive commit message

 Always use your real name and email in the commit meta data

 What characterizes a change that makes reviewers cringe?

 Multiple changes going into the same commit “various bug fixes in Foo”

 Large changes that could have been broken into incremental changes

 Poorly written commit messages

© ARM 2017 150

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

The structure of a commit message

python: Move native wrappers to the _m5 namespace

Swig wrappers for native objects currently share the _m5.internal name

space with Python code. This is undesirable if we ever want to switch

from Swig to some other framework for native binding (e.g., PyBind11

or Boost::Python). This changeset moves all of such wrappers to the

_m5 namespace, which is now reserved for native code.

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3

Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>

Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>

Reviewed-by: Jason Lowe-Power <jason@lowepower.com>

Summary:

Body:

Meta data:

© ARM 2017 151

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Commit message: Summary line

 Short summary of your change (max 65 characters)

 Think of it as a subject in an email

 Should uniquely identify your change

 Typically the first thing a potential reviewer sees

 Sometimes the only information shown about a change

 Keywords used to identify affected components

 See the wiki for details

python: Move native wrappers to the _m5 namespaceSummary:

© ARM 2017 152

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Commit message: Body

 Should describe your change in detail – think of it as documentation

 Reviewers will read this before they see any code

 Describe what the change does and why

 Not necessarily how, that should be clear from the code

 Describe any implementation trade-offs

 Describe known limitations

Swig wrappers for native objects currently share the _m5.internal name

space with Python code. ...

Body:

© ARM 2017 153

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Commit message: Metadata

 Change-Id: Unique ID used by Gerrit to identify the change (generated)

 Signed-off-by: It’s complicated…

 Reviewed-by: Use this to acknowledge reviewers (generated by Gerrit)

 Reviewed-on: Link to review request (generated by Gerrit)

 Reported-by: Use this to acknowledge users that report bugs

 Tested-by: Can be used to acknowledge testers

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3

Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>

Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>

Reviewed-by: Jason Lowe-Power <jason@lowepower.com>

Meta data:

© ARM 2017 154

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Developer Certificate of Origin

 By making a contribution to this project, I certify that:

a) The contribution was … by me and I have the right to submit it…; or

b) … is based upon previous work that … is covered under an appropriate open source

license and I have the right under that license to submit that work with modifications… ; or

c) The contribution was provided directly to me by some other person who certified (a), (b)

or (c) and I have not modified it.

d) I understand and agree that this project and the contribution are public and that a record

of the contribution … is maintained indefinitely and may be redistributed…

 See the https://developercertificate.org/ for the full version.

 A Signed-off-by: tag indicates that you understand and agree to the DCO.

https://developercertificate.org/

© ARM 2017 155

Text 54pt sentence case Submitting Code:
How to use the new Gerrit-based flow

© ARM 2017 156

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Code submission flow

Post change for review

Reviewers

happy?
Update change

Wait for reviews

DoneCommit change

No

Yes

Apply stick to

reviewer

© ARM 2017 157

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

The job of a reviewer

 Evaluate technical aspects

 Is it doing what it says in the commit message?

 Is a technically sound implementation?

 Evaluate implementation aspects

 Is the commit message describing the change?

 Is it following the style guidelines?

 Legal aspects

 Patch author’s responsibility, but reviewers should look out for obvious issues.

You are the reviewers!

© ARM 2017 158

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

gem5 is changing

 Recently switched from Mercurial to Git

 Canonical repository on http://gem5.googlesource.com

 Mirror on GitHub: http://github.com/gem5

 Recently switched from ReviewBoard to Gerrit

 Automates code submission

 Tightly integrated with git

 Google (e.g., GMail) accounts for authentication

 Will integrate support automatic testing

http://gem5.googlesource.com/
http://github.com/gem5

© ARM 2017 161

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Setting up gerrit & git

 Prerequisites

 Google account registered with the email

address you use for contributions

 Where to start:

 http://gem5.googlesource.com

 Git authentication

 Required to push changes for review

 Uses https unlike most other installations

 Requires an authentication cookie

http://gem5.googlesource.com/

© ARM 2017 162

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Posting a change for review

 Push to a “magical” git ref:

 refs/for/<branch>: Create a review request

 refs/drafts/<branch>: Create a draft review

 Pushes either updates an existing review or creates a new one

 More advanced usage described in the Gerrit manual

 Tips and tricks:

 Make sure that you assign one or more reviewers to the change

 Assign a topic name to related changes

© ARM 2017 163

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Simple Example

$ git clone https://gem5.googlesource.com/public/gem5

<hack hack hack>

$ git add -i

$ git commit -m “test commit”

$ git push origin HEAD:refs/for/master

…

remote: New Changes:

remote: https://gem5-review.googlesource.com/2160 Test commit

remote:

To https://gem5.googlesource.com/public/gem5

* [new branch] HEAD -> refs/for/master

Create a

local clone

Commit

your changes

Push changes

for review

https://gem5.googlesource.com/public/testing

© ARM 2017 164

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

https://gem5-review.googlesource.com/2160

© ARM 2017 165

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

https://gem5-review.googlesource.com/2160

© ARM 2017 166

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

https://gem5-review.googlesource.com/2160

© ARM 2017 167

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Reviewing code in Gerrit

 Changes can only be submitted if they have been:

 Reviewed

 Accepted by a maintainer

 Passed automatic testing

 Gerrit uses labels to enforce these policies:

 Code-Review: Normal code reviews, anyone can use these.

 Maintainer: Only available to maintainers, required for submission.

 Verified: Used by CI system to accept/reject depending on test outcomes

 Style-Check: Automatic style checking

 Maintainers can override labels if they are obviously wrong

© ARM 2017 168

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Code submission flow

Post change for review

Reviewers

happy?
Update change

Wait for reviews

Done

Yes

Commit change

Maintainer

happy?

No

Yes

No

© ARM 2017 169

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How to review code

 Start with the commit message

 Does it make sense?

 Is it a change that makes sense in gem5? Why/Why not?

 Look at the code

 Is it solving the problem in the description?

 Is the implementation technically sound? Are there obvious bugs?

 Comment on the code and submit a review score

 -2: Don’t submit under any circumstances (blocks submission)

 …

 +2: Looks good, approved!

 Be polite and kind

 Developers and reviewers are people too!

© ARM 2017 170

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Further information - gem5 related papers from ARM Research

 Sunwoo, Dam, et al. "A structured approach to the simulation, analysis and
characterization of smartphone applications." IISWC'13

 Gutierrez, Anthony, et al. "Sources of error in full-system simulation." ISPASS'14

 Hansson, Andreas, et al. "Simulating DRAM controllers for future system architecture
exploration." ISPASS'14

 De Jong, Rene, and Andreas Sandberg. "NoMali: Simulating a realistic graphics driver
stack using a stub GPU." ISPASS'16

 Rusitoru, Roxana. "ARMv8 micro-architectural design space exploration for high
performance computing using fractional factorial." PMBS'15

 Vasileios Spiliopoulos, et.al.“Introducing DVFS-Management in a Full-System
Simulator.” MASCOTS '13

 Matthew J. Walker, et al. “Accurate and Stable Run-Time Power Modeling for Mobile
and Embedded CPUs.” IEEE Trans. on CAD of Integrated Circuits and Systems 36’2017

https://twitter.com/intent/tweet?url=http://dx.doi.org/10.1109/TCAD.2016.2562920&text="Accurate+and+Stable+Run-Time+Power+Modeling+for+Mobile+and+Embedded+CPUs."&hashtags=dblp&related=dblp_org

© ARM 2017 171

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Further information - gem5 related papers from ARM Research

 Jagtap, Radhika, et al. "Elastic traces for fast and accurate system performance

exploration." ISPASS’16

 Mohammad Alian, et al. “dist-gem5: Distributed simulation of computer clusters.”

ISPASS’17

https://twitter.com/intent/tweet?url=http://dx.doi.org/10.1109/TCAD.2016.2562920&text="Accurate+and+Stable+Run-Time+Power+Modeling+for+Mobile+and+Embedded+CPUs."&hashtags=dblp&related=dblp_org

11-13 September 2017

Robinson College, Cambridge, UK

Submission deadline - 30 April 2017

Early-bird discount ends - 30 June 2017

