
The gem5
architecture

simulator

A tutorial for HPCA ‘23, presented
by the Bobby R. Bruce

WIFI PW: hotel 900

Today’s Agenda

gem5 standard library (9:30 to 10:50)
• What is it?
• Where is it?
• Gem5 Resources
• Coffee Break at somepoint.
• Understanding the stats.
• Creating a traffic generator.
• Creating a FS simulation.

• The Simulator Module

Introduction (8:30 to 9:00)
• What is gem5?
• What can gem5 be used for?
• Nomenclature
• Obtaining and building gem5

”Hello World” in gem5 (9:00 to 9:30)
• Running a “Hello World” binary in SE Mode
• How does gem5 work?

• Discrete Event Simulation
• SimObejects

Speeding things up (10:50 to 11:20)
• What can we do?
• Checkpoints
• Simpoints and Looppoints

The GPU Model (11:20 to 12:05)

Wrap-up (12:05-12:15)

Tutorial on
Looppoints in the

afternoon
(Outremont 1)

WIFI PW: hotel 900

GitHub Codespaces

https://github.com/gem5-hpca-2023/gem5-tutorial-codespace

“Code” -> “Codespaces” ->
“Create Codespace on master”

This will take a minute to load a
Visual Studio Code environment in
your web-browser.

WIFI PW: hotel 900

https://github.com/gem5-hpca-2023/gem5-tutorial-codespace

GitHub Codespaces

The
“ALL/gem5.fast”

binary comes
pre-built and
installed as

“gem5”

“materials”
contains

everything you
need.

This is
completely open
source. Feel free

to pull a copy.

What is gem5?

The gem5 architecture simulator provides a platform for
evaluating computer systems by modeling the behavior of
the underlying hardware. It enables researchers to simulate
the performance and behavior of complex computer
systems, including the CPU, memory system, and
interconnects. This makes it possible to study the
performance of different microarchitectural and
architectural choices, as well as the effects of different
workloads, without having to build and test real systems.

By ChatGPT

A little bit of history

The m5 Simulator
“A tool for simulating systems”

(~2002)

The GEMS simulator
Provided a detailed memory system.

(~2000)(2011)

A true public infrastructure project

Open Source

Free (like
beer)

Massively
Collaborative

Who uses gem5, and why?

Education

Academic
Research and

public
research labs

Industrial
R&D

Education

Problem: Students
need to learn to

design hardware but
don’t have a multi-
billion-dollar factory

Research

Researchers

We recently surveyed the top architecture conferences and
found:

- 70% of all computer architecture research utilizes simulation.
- The gem5 simulator is by-far the most popular.

Room for improvement: Most users still “roll their own”
simulation software. Only 20% use gem5 directly. We want to
go above 50% by 2027.

Industry

?
Really, we don’t know exactly. We don’t track users
and industrial users seldom make themselves
known.

Industry

Big players we know use it

Python

What languages do we use?

CPP

Your simulation configuration is written in
Python which interacts with the core CPP
simulator.

In this tutorial we’ll be working solely at the
level of Python.

Adding CPP code is necessary for
extending gem5’s capabilities.

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host
Exposes hardware to the guest

Guest: Code running on simulated hardware
OS running on gem5 is guest OS
gem5 is simulating hardware

Simulator’s code: Runs natively
executes/emulates the guest code

Guest’s code: (or benchmark, workload, etc.)
Runs on gem5, not on the host.

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Simulation

gem5

Guest

Workload

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host
Exposes hardware to the guest

Simulator’s performance:
Time to run the simulation on host
Wallclock time as you perceive it

Simulated performance:
Time predicted by the simulator
Time for guest code to run on

simulator

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

gem5

Guest

Simulation Workload

Let’s hit the ground running

This example will show:

1. How someone obtains gem5.
2. How you build it.
3. Running a very basic ”Hello World”

simulation.

Downloading/building gem5

> git clone https://gem5.googlesource.com/public/gem5

> cd gem5

> scons build/ALL/gem5.opt –j<number of threads>

stable: The default branch for gem5. Updated at stable releases.

develop is updated more frequently (>1 per day)

Write a “hello world!” configuration (in Python!)

Open “materials/hello-world.py”.

We have provided the imports:

“hello world!”: Obtaining the components

“hello world!”: Adding to the board!

“hello world!”: Obtain the resource

“hello world!”: Load the board to the simulator

“hello world!”: In full

A full example can be found in
“materials/complete/hello-world.py”

“hello world”: Let’s run it!

> gem5 materials/hello-world.py

Wait, what just happened?

We just did a
“Hello World!”

1-Core, No
Cache

Hierarchy, 1GiB
memory

Using “SE
Mode”

Demonstrated
the core library

APIs

Ok, but how does it work?

Modern systems are very complex, and
the design of gem5 simulations reflects
this.

However, at its core, the simulator builds
on a relatively simple model.

At its core: it’s a discrete event simulator

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

gem5 is a discrete event
simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

Event - 51

At its core: it’s a discrete event simulator

Discrete event simulation example

TIME

Fetch first
inst

Send req to
cache

Miss in L1,
send to
DRAM

Put in read
Q

L1 tag latency To DRAM latency DRAM read latency

Get data
from DRAM

Cache recvs
data

Processor
decodes

instruction

Processor
executes

instruction

Fetch
next
inst

Response latency One cycle

Discrete event simulation

"Time" needs a unit
In gem5, we use a unit called "Tick"

Need to convert a simulation "tick" to user-understandable
time
E.g., seconds

This is the global simulation tick rate
Usually this is 1 ps per tick or 1012 ticks per second

Ok, but how do you schedule these events?

SimObject
1. Schedule events and

process events.

2. Talk to other SimObjects.

While some are incredibly complex, at their
core they only do two things:

It’s hard to scale this…

gem5 Config file

When done without the library you must define
every part of your simulation.

This allows for maximum flexibility but can mean
creating 100s of lines of Python to create even a
basic simulation.

The solution: The gem5 standard library

gem5 Config file

The stdlib is a library which allows for users to quickly create
systems with pre-built components.

The stdlib's module architecture allows for components (e.g. a
memory system or a cache hierarchy setup) to be quickly

swapped in and out without radical redesign.

stdlib

The stdlib modular metaphor

Processor

Board

Memory Cache Hierarchy

SingleChannelD
DR3_1600

SingleChannelD
DR4_2400

...

Simple Processor

SwitchableProcessor

...

No Cache

PrivateL1PrivateL2

MesiTwoLevel

...

The modular architecture

Where to find stuff: The directory structure

Where to find stuff : Importing in a script

Let’s go back and loop at our script again

gem5 Resources

• gem5 resources is a repository providing sources for artifacts that are known to be
compatible with gem5.

• These resources are not necessary for the compilation or running gem5 but may aid
users in running simulations. E.g.: disk images, kernels, applications, cross-
compilers, etc.

• Resources are held on gem5's Google Cloud Bucket, and sources for these
resources are found at: https://gem5.googlesource.com/public/gem5-resources/

• The stdlib can be used to automatically obtain and use these resources.

• https://resources.gem5.org/resources.json

https://gem5.googlesource.com/public/gem5-resources/
https://resources.gem5.org/resources.json

Looking up gem5 Resources
https://resources.gem5.org/resources.json

This is all machine-reachable for now. We're working on a web-
portal.

https://resources.gem5.org/resources.json

Obtaining Resources in the stdlib
This complete script can be found in
“materials/obtain-resources.py”

> gem5 materials/obtain-resources.py

Obtaining Resources in the stdlib

The stdlib will use the cached resources if already downloaded.

Using a Custom Resource

You don't need to use the gem5 resources

You can specify a local resources (e.g., your own disk image)

More detailed output

Look into the more the ”gem5/m5out” directory

• The “config” files detail your
system configuration (various
formats, ”config.ini” most
human-readable.

• The stats.txt shows the
various simulation statistics.

• In Full-System simulations the
terminal output can be found
in this directory.

More detailed output

Look into the more the ”gem5/m5out/stats.txt” file

Modifying our design!

Remember: gem5 is modular!

In general, you can replace components with components of the same type.

Let’s convert our basic “hello world” board into a Traffic generator board.

Traffic Generator

Generator Memory System

The ‘TestBoard’

TestBoard

Generator Memory System

And gem5 does
the rest!

Let’s build one!

Go to “materials/traffic-generator.py”

Here we have imports, and some boilerplate code to run the
simulation. You’re code will go in-between.

Traffic generator: Setup our components

Traffic generator: Connect them to the
TestBoard

Running the traffic generator.

> gem5 materials/traffic-generator.py

This should be quite fast. What have we done?

Generated
traffic to

evaluate a
memory

component

This does not
require a

workload or
even a real
processor

Users would
typically

consult the
stats.txt

Let’s add a ‘fun’ memory system

2nd generation
High Bandwidth
Memory stack

Complete version can be found in
“materials/complete/traffic-generator-hbm2stack.py”

More complex designs: An X86 full system
simulation in the stdlib

Move to "materials/x86-full-system.py. You should
see the following provided for you:

Adding the 'requires' function

This adds a check for the gem5 binary parsing the script. In this
case:

1. The binary supports the X86 ISA.
2. The binary supports the MESI Two Level coherence protocol.

Extending the gem5 library

Extending the gem5 library

The SimpleSwitchingProcessor allows for different
types of cores to be swapped during a simulation
with `processor.switch()`.

This can be useful when wanting to switch to and
from a detailed form of simulation. (Timing = less
detailed but fast; O3 = detailed but slow).

Extending the gem5 library

As usual, we add the components to the board, in
this case an `X86Board`.

Extending the gem5 library

Extending the gem5 library

http://resources.gem5.org/resources.json

http://resources.gem5.org/resources.json

Extending the gem5 library

Extending the gem5 library

Exit Events
Note: This is module is still considered to be
in Beta. The API may change in future
versions of gem5

During a simulation you
can have "Exit Events".

In this example there are
two. These return the
simulation to the Python
Script.

The Simulation Loop

Simulation

Exit Event

“simulate.run()”

X

“simulate.run()”

Simulation

Exit Event

The Simulator Module handles the loop!

Here we can run up to an exit event, do
things, and then continue the run.

In this case we want to switch the CPU
cores.

The Simulator Module: We can do better

Here we can specify exactly what to do
on each exit event type via Python
generators.

The Simulator had default behavior for
these events, but they can be
overridden.

• ExitEvent.EXIT
• ExitEvent.CHECKPOINT
• ExitEvent.FAIL
• ExitEvent.SWITCHCPU
• ExitEvent.WORKBEGIN
• ExitEvent.WORKEND
• ExitEvent.USER_INTERRUPT
• ExitEvent.MAX_TICK

Your done! You can now run your full-
system simulation

Warning: This will take a long
time to complete execution.

Simulation’s major pitfall: It’s slloooww

Simulating 1
Second

>> 100k seconds on
the host

Fortunately, there are some work arounds

S
im

ul
at

io
n

Fi
d

el
ity

Simulation Time

Key idea: You don’t
need to simulate

everything perfectly,
or at all.

Some techniques we provide

CPU Models KVM Mode

Checkpoints SimpointsSE Mode

Simpoints/Looppoints

There’s a tutorial on
Looppoints this

afternoon in
Outremont 1

Discuss: What is a Simpointing?

Simpoints

Open “materials/simpoints-checkpoint.py”

Simpoints

Simpoints

Simpoints

> gem5 materials/simpoint-checkpoint.py

Generates
checkpoints at

each
warmup/Simpoint

region start

Simpoints: Restoring

> gem5 materials/simpoints-restore.py

The gem5 GPU Model

Caveats

gem5 is a tool, not a panacea

Most models are not validated
against “real” hardware

See “Architectural Simulators
Considered Harmful”

There are bugs!

Getting (more) help
Main gem5 website: http://gem5.org/
More like this:
https://www.gem5.org/documentation/

learning_gem5/introduction/
Mailing lists: http://gem5.org/Mailing_Lists

gem5-users: General user questions
(you probably want this one)

gem5-dev: Mostly code reviews and high-
level

dev talk
gem5 slack: https://join.slack.com/t/gem5-
workspace/shared_invite/zt-1c8go4yjo-
LNb7l~BZ0FagwmVxX08y9g

8 0

http://gem5.org/
https://www.gem5.org/documentation/learning_gem5/introduction/
https://www.gem5.org/documentation/learning_gem5/introduction/
http://gem5.org/Mailing_Lists
https://join.slack.com/t/gem5-workspace/shared_invite/zt-1c8go4yjo-LNb7l~BZ0FagwmVxX08y9g
https://join.slack.com/t/gem5-workspace/shared_invite/zt-1c8go4yjo-LNb7l~BZ0FagwmVxX08y9g
https://join.slack.com/t/gem5-workspace/shared_invite/zt-1c8go4yjo-LNb7l~BZ0FagwmVxX08y9g

References
� Martin et al. 2005. Multifacet’s general execution-driven multiprocessor simulator

(GEMS) toolset. ACM SIGARCH Computer Architecture News.
https://doi.org/10.1145/1105734.1105747

� Binkert et al. 2006. The M5 simulator: Modeling Networked Systems. IEEE Micro.
https://doi.org/10.1109/MM.2006.82

� Binkert, et al. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39
http://dx.doi.org/10.1145/2024716.2024718

� Lowe-Power et al 2021. The gem5 Simulator: Version 20.0+. ArXiv Preprint
ArXiv:2007.03152, 2021. https://doi.org/10.48550/arXiv.2007.03152

https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1109/MM.2006.82
http://dx.doi.org/10.1145/2024716.2024718
https://doi.org/10.48550/arXiv.2007.03152

