WIFI PW: hotel 900

The gemo
architecture
simulator

A tutorial for HPCA 23, presented
by the Bobby R. Bruce

DArchR

COMPUTER SCIENCE DAVIS ARCHITECTURE RESEARCH

Today's Agenda WIFI PW: hotel 900

Introduction (8:30 to 9:00) Speeding things up (10:50 to 11:20)
« What is gemb? « What can we do?

« What can gemb be used for? + Checkpoints

« Nomenclature * Simpoints and Looppoints

Obtaining and building gemb
The GPU Model (11:20 to 12:05)

"Hello World” in gem5 (9:00 to 9:30)
* Running a “Hello World” binary in SE Mode Wrap-up (12:05-12:15)
« How does gemb work?

« Discrete Event Simulation

« SimObegjects

gemb standard library (9:30 to 10:50)

* What is it? :

« Where is it? Tutorial on

« Gemb5 Resources . .

« Coffee Break at somepoint. Looppomts In the
« Understanding the stats. afternoon

« Creating a traffic generator.

« Creating a FS simulation. (O utremont 1)

e The Simulator Module

e¢?cembd

GitHub Codespaces WIFI PW: hotel 900

https://github.com/gemb-hpca-2023/gemb-tutorial-codespace

<> Code (© Issues 1% Pullrequests (Actions [Projects [Wiki @ Security [~ Insights

" n " 144
¥ master ~ ¥ 1branch © 0 tags Go to file Add file ~ A COde -> COdeSpaceS ->

Local Codespaces N {1 144
@ oo oo s : reate Codespace on master
Codespaces

, . £ o o
B8 .devcontainer Update docker i Your workspaces in the cloud 4
B .vscode Initial commit ¢
B8 docker Fixed docker-cc No codespaces G
I elfie-refs Add elfie resour You don't have any codespaces with this %

repository checked out

L] L] L]
gem5 @ 3bb19be Update gemb al h S | I ta ke a te t | a d a
: This wi minute to lo
gemb5-resources @ dbac39a Update gemb5 al

. . . .
B materials Add materials fc Learn more about codespaces... 2 VI S u a | S t u d I O C O d e e nVI ro n I I l e n-t I n
3 .gitignore Initial commit
Codespace usage for this repository is paid for by gem5-hpca- r W - r W r
[.gitmodules Initial commit 2023 P ¢
D .pre-commit-config.yaml Initial commit 3 days ago
m

e o . L Pt

g2cem> 3

https://github.com/gem5-hpca-2023/gem5-tutorial-codespace

The

“ALL/gemb.fast”
binary comes
pre-built and

Installed as
“gemb”

GitHub Codespaces

“materials”
contains
everything you
need.

This is
completely open
source. Feel free

to pull a copy.

What is gemb5?

The gemb architecture simulator provides a platform for
evaluating computer systems by modeling the behavior of
the underlying hardware. It enables researchers to simulate
the performance and behavior of complex computer
systems, including the CPU, memory system, and
Interconnects. This makes it possible to study the
performance of different microarchitectural and
architectural choices, as well as the effects of different
workloads, without having to build and test real systems.

By ChatGPT

e¢?cemMmbd

A little bit of history

:::i: !;55 :i::: @ Multifacet GEMS

gel I |5 The GEMS simulator

Provided a detailed memory system.

The m5 Simulator

“A tool for simulating systems”

(~2002) (2011) (~2000)

e?cembd

A true public infrastructure project

Open Source

Free (like

Massively

Collaborative

beer)

e¢?cembd

Who uses gemd, and why?

Academic

Research and Industrial

public R&D

research labs

¢?cemb

Education

Problem: Students
need to learn to

design hardware but
don’t have a multi-
billion-dollar factory

e¢?cemb

(a) Scientific research

Take hypothesis about
environment

Design experiment
Pick a random sample from a
population

Run experiment and quantify

Interpret results

If necessary, create new
hypothesis

Research

(b) Systems research

Take hypothesis about
environment

Design experiment
Pick baseline design and
workloads

Run experiment and quantify
Run model or measure
hardware

Interpret results

If necessary, propose new
design

e?cembd

cembd

10

Researchers

We recently surveyed the top architecture conferences and
found:

- 70% of all computer architecture research utilizes simulation.

- The gemb simulator is by-far the most popular.

Room for improvement: Most users still “roll their own”

simulation software. Only 20% use gemb directly. We want to
go above 50% by 2027.

¢?cembd

11

Industry

?

Really, we don’t know exactly. We don't track users
and industrial users seldom make themselves
known.

e?cembd

12

Industry

Big players we know use it

o~
«7 ARM AMDD

e?cembd

What languages do we use?

Your simulation configuration is written in
Python which interacts with the core CPP
simulator.

In this tutorial we’ll be working solely at the
level of Python.

Adding CPP code is necessary for
extending gemb’s capabilities.

e?cembd

14

Nomenclature Your system

Host: the actual hardware you‘re using

Simulator: Runs on the host Host
Exposes hardware to the guest 0S

Guest: Code running on simulated hardware 4/

OS running on gemb is guest OS

gemb is simulating hardware Simulation Workloac
Simulator’s code: Runs natively 4/6

executes/emulates the guest code uest
Guest’s code: (or benchmark, workload, etc.) 4/

Runs on gemb, not on the host.

o
T —

Nomenclature Your system

Host: the actual hardware you’'re using

Simulator: Runs on the host Host
Exposes hardware to the guest

Simulator’s performance:

Time to run.the simulation on hqst Simulation Workloac
Wallclock time as you perceive it

Simulated performance: Guest

Time predicted by the simulator 4/

Time for guest code to run on
simulator m Host
—

Let’s hit the ground running

This example will show:

1.

How someone obtains gemo.

2. How you build it.

3.

Running a very basic "Hello World”
simulation.

¢?cembd

17

Downloading/building gemb

> git clone https://gem5.googlesource.com/public/gem5
> c¢d gem5

> scons build/ALL/gem5.o0pt -j<number of threads>

stable: The default branch for gemb. Updated at stable releases.

develop is updated more frequently (>1 per day)
2cemb

18

Write a “hello world!” configuration (in Python!)

Open “materials/hello-world.py”.

We have provided the imports:

from gem5.components.boards.simple_board import SimpleBoard

from gemS.components. cachehierarchies.classic.no_cache import NoCache
from gem5.components.memory import SingleChannelDDR3_1600

from gem5.components.processors.simple_processor import SimpleProcessor
from gems.components.processors.cpu_types import CPUTypes

from gem5.resources.resource import obtain_resource

from gemS.simulate.simulator import Simulator

NP2

oo NN O Ul B WIN =

e¢?cemMmbd

19

10
11
12
13

“hello world!”: Obtaining the components

Obtain the components.
cache_hierarchy = NoCache()
memory = SingleChannelDDR3_1600("1GiB")

processor = SimpleProcessor(cpu_type=CPUTypes.ATOMIC, num_cores=1, isa=ISA.X86)

e¢?cemMmbd

20

“hello world!”: Adding to the board!

14| #Add them to the board.
15| board = SimpleBoard/(

16 clk freg="3GHz",

17 processor=processor,

18 memory=memory,

19 cache hierarchy=cache hierarchy,
20)

e?cembd

23
24
23

“hello world!”: Obtain the resource

Obtain a binary to run via gemS-resources.
binary = obtain_resource('x86-hello64-static")
board.set_se_binary_workload(binary)

e¢?cemMmbd

22

“hello world!”: Load the board to the simulator

26| # Setup the Simulator and run the simulation.
27 simulator = Simulator(board=board)
28| simulator.run()

e¢?cemMmbd

23

O o0 ~NOWUL A WN =

NRNNNKNNNNN R e e e e pd el e
O ~NOWUVHE WNEMEOOUONOOWUL A WNRMH®

“hello world!”: In full

Obtain the components.

cache hierarchy = NoCache()

memory = SingleChannelDDR3 1600("1GiB")
processor = SimpleProcessor(cpu type=CPUTypes.ATOMIC, num cores=1)

#Add them to the board.
board = SimpleBoard(
clk fregq="3GHz",
processor=processor,
memory=memory,
cache hierarchy=cache hierarchy,
)

Set the workload.
binary = Resource("x86-hello64-static")
board.set se binary workload(binary)

Setup the Simulator and run the simulation.
simulator = Simulator(board=board)
simulator.run()

e¢?cemMmbd

A full example can be found in
“materials/complete/hello-world.py”

24

“hello world”: Let’s run it!

> gem5 materials/hello-world.py

Resource 'x86-hello64-static' was not found locally. Downloading to '/home/bbruce/.cache/gem5/x86-hello64-static’'...

Finished downloading resource 'x86-hello64-static’.

warn: The simulate package is still in a beta state. The gem5 project does not guarantee the APIs within this package will remain consistent
across upcoming releases.

Global frequency set at 1000000000000 ticks per second

build/X86/mem/mem_interface.cc:791: warn: DRAM device capacity (8192 Mbytes) does not match the address range assigned (1024 Mbytes)
©: board.remote _gdb: listening for remote gdb on port 7001

build/X86/sim/simulate.cc:194: info: Entering event queue @ ©. Starting simulation...

build/X86/sim/syscall_emul.hh:1014: warn: readlink() called on '/proc/self/exe' may yield unexpected results in various settings.

Returning '/scr/bbruce/.cache/gem5/x86-hello64-static’
build/X86/sim/mem state.cc:443: info: Increasing stack size by one page.
Hello world!

¢?cembd

25

Wait, what just happened?

1-Core, No
Cache
Hierarchy, 1GiB
memory

Demonstrated
the core library
APls

We just did a Using “SE
“Hello World!” Mode”

26

Ok, but how does it work?

Modern systems are very complex, and
the design of gemb simulations reflects
this.

However, at its core, the simulator builds
on a relatively simple model.

¢2cemb

27

At its core: it's a discrete event simulator

gembo is a discrete event simulator

Event Queue 1) Event at head dequeued

7) Event executed

ﬁ 5) More events queued

Event - 52
Event - 50

‘Event-50
‘Event-20

Event - 11
Event - 10

e?cembd

28

At its core: it's a discrete event simulator

gemb> is a discrete event

simulator
Event Queue 1) Event at head dequeued

,@_

Event - b5
Event - 52

7) Event executed

5) More events queued
Event - 50

Event - 11

e?cembd

29

Discrete event simulation example

Miss in L1,
send to
DRAM

Fetch first
inst

Put in read
@

Get data Cache recvs
from DRAM data

Send req to
cache

Processor
decodes

Processor
executes

Wn'

> TIME

L1 tag IatencJ To DRAM latency ! DRAM read |atenlyResponse IatencyIOne cycle

Discrete event simulation

"Time" needs a unit
In gemb, we use a unit called "Tick"

Need to convert a simulation "tick” to user-understandable
time
E.g., seconds

This is the global simulation tick rate
Usually this is 1 ps per tick or 1072 ticks per second

e¢?cemMmbd

31

Ok, but how do you schedule these events?

While some are incredibly complex, at their
core they only do two things:

1. Schedule events and
process events.

SimObject

2. Talk to other SimObjects.

e¢?cembd

352

It's hard to scale this...

A

@ D
Config file
U)

When done without the library you must define

every partof your simulation.

This allows for maximum flexibility but can mean
creating 100s of lines of Python to create even a

basic simulation.

e?cembd

$E

The solution: The gemd standard library

4)
— stdlib D Config file
C >

The stdlib is a library which allows for users to quickly create
systems with pre-built components.

The stdlib's module architecture allows for components (e.g. a

memory system or a cache hierarchy setup) to be quickly
swapped in and out without radical redesign.

¢?cembd

@

SingleChannelD
DR3_1600

~

_

DR4_2400

e N
SingleChannelD

J

[Menay

=

The stdlib modular metaphor

-

oY

[Simple Processor J

[SwitchableProcessor }

U

=

Processor /

y

g

f No Cache \

J

s

g

PrivateL1Privatel.2

~

J

s

.

MesiTwolevel

~

_J

\

=

Cache Hierarch

J

I

ri

The modular architecture

[

(clk_freq, processor, memory, cache_hierarchy)
A = ~

] AbstractBoardJ
~
{AbstractSystemBoard } [Abstractprocessor J [AbstractMemorySystem } [AbstractCacheHierarchy}
|||| \I
‘ SingleChannelDDR3_1600
X86Board AbstractClassicCacheHierarchy
[SimpleProcessor AbstractRubyCacheHierarchy

PrivateL1PrivateL2CacheHierarchy

e?cembd

36

Where to find stuff: The directory structure

v gem5

5 build
build_opts
build_tools
configs
ext

include

]
6}

mSout

site_scons

{ v v v v Vv Vv v v

Src
arch
base

cpu

spggiEE

dev

doc

=
L]

doxygen
gpu-compute
kern
learning_gemS5

mem

VOWVOWV OV VOV VWV VYV WV

proto

T

e?cembd

v python
v gem5
Vv & components
> M boards
v cachehierarchies
> M chi
v classic
> caches
__init__.py
abstract_classic_cache_hierarchy.py
no_cache.py

private_l1_cache_hierarchy.py

ETEERERY

private_l1_private_|l2_cache_hierarchy.py
> M ruby
@ _init__py
@ abstract_cache_hierarchy.py
@ abstract_two_level_cache_hierarchy.py
> B memory
> Ml processors
@ _init__py
> M prebuilt
> M resources
> M simulate
> R utils

37

Where to

v python
v gem5
v @ components
> M boards
v cachehierarchies
> M chi
v classic

> caches

__init__.py
abstract_classic_cache_hierarchy.py
no_cache.py
private_l1_cache_hierarchy.py

EEEERE

private_l1_private_l2_cache_hierarchy.py
> M8 ruby
@ _init__.py
@ abstract_cache_hierarchy.py
@ abstract_two_level_cache_hierarchy.py
> B memory
> Ml processors
@ _init__py
> Ml prebuilt
> M resources
> M simulate
> ER utils

find stuff : Importing in a script

N OO s WN e

from gem5.components.boards.simple board import SimpleBoard

from gem5.components.cachehierarchies.classic.no cache import NoCache

from gem5.components.memory.single channel import SingleChannelDDR3 1600

from gem5.components.processors.simple processor import SimpleProcessor

from gem5.components.processors.cpu types import CPUTypes

from gem5.resources.resource import Resource

from gem5.simulate.simulator import Simulator

e?cembd)

Let's go back and loop at our script again

1 from gem:

2 from ge

3 from ge

4 from

5 from

6 from gem5.resources.resource import Resource
7 from or import Simulator
8

9| # Obtain the components.

10| cache hierarchy = NoCache()

11| memory = SingleChannelDDR3 1600 ("1GiB")

12 processor = SimpleProcessor(cpu type=CPUTypes.ATOMIC, num cores=1)
13

14| #Add them to the board.

15| board = SimpleBoard(

16 clk freg="3GHz",

17 processor=processor,

18 memory=memory,

19 cache hierarchy=cache hierarchy,
20)
21
22| # Set the workload.
23| binary = Resource("x86-hello64-static")
24| board.set se binary workload(binary)
25
26| # Setup the Simulator and run the simulation.
27| simulator = Simulator(board=board)
28| simulator.run()

cem>d

gemd Resources

gemb resources is a repository providing sources for artifacts that are known to be
compatible with gemb.

These resources are not necessary for the compilation or running gemb but may aid
users in running simulations. E.g.: disk images, kernels, applications, cross-
compilers, etc.

Resources are held on gemb's Google Cloud Bucket, and sources for these
resources are found at: https://gemb.googlesource.com/public/gemb-resources/

The stdlib can be used to automatically obtain and use these resources.

https://resources.gemb.org/resources.json

e?cembd

40

https://gem5.googlesource.com/public/gem5-resources/
https://resources.gem5.org/resources.json

Looking up gemb5 Resources

https://resources.gemb.org/resources.json

resources”": [

"resources": [

{

"type": "resource",
"name" : "riscv-disk-img",

"documentation” : "A simple RISCV disk image based on busybox.",

"architecture": "RISCV",
"is_zipped" : true,
"mdS5sum” : "d6126db9f6bed7774518ae25aa35f153",
"url": "{url_base}/images/riscv/busybox/riscv-disk.img.gz",
"source" : "src/riscv-fs",
"additional_metadata"” : {
"root_partition”: null
}

}s

This is all machine-reachable for now. We're working on a web-
portal.

e¢?cemMmbd

41

https://resources.gem5.org/resources.json

o 5 W N =

Obtaining Resources in the stdlib

This complete script can be found in
“materials/obtain-resources.py”

from gem5.resources.resource import obtain_resource
resource = obtain_resource("riscv-disk-img")

print(f"The resource is available at {resource.get_local_path()}")

> gem5 materials/obtain-resources.py

¢?cembd

42

Resource 'riscv-disk-img' was not found locally. Downloading to '/home/bbruce/.cache/gem5/riscv-disk-img.gz'...

Obtaining Resources in the stdlib

Finished downloading resource 'riscv-disk-img'.

Decompressing resource 'riscv-disk-img' ('/home/bbruce/.cache/gem5/riscv-disk-img.gz')...

Finished decompressing resource 'riscv-disk-img'.

The resources is available at /home/bbruce/.cache/gem5/riscv-disk-img
bbruce@liberty:~/Desktop/gem5-tutorial/gem5$./build/X86/gem5.opt ../materials/stdlib/obtaining-resources.py

gem5
gems

gemsS
gem5
gem>S
gem5

Simulator System. http://gem5.o0rg
is copyrighted software; use the --copyright option for details.

version 21.2.0.0

compiled May 16 2022 12:37:27

started May 16 2022 12:46:24

executing on liberty.cs.ucdavis.edu, pid 305928

command line: ./build/X86/gem5.opt ../materials/stdlib/obtaining-resources.py

The resources is available at /home/bbruce/.cache/gem5/riscv-disk-img

The stdlib will use the cached resources if already downloaded.

e?cembd

43

3

Using a Custom Resource

You don't need to use the gemb resources

You can specify a local resources (e.g., your own disk image)

CustomResource("tests/test-progs/hello/bin/x86/1linux/hello")

e¢?cemMmbd

44

More detailed output

Look into the more the "gemb5/mbout” directory

« The “config” files detail your
system configuration (various

config.dot formats, "“config.ini” most
human-readable.
A config.dot.pdf
‘m config.dot.svg « The stats.txt shows the

config.ini various simulation statistics.
contig.json In Full-System simulations the
stats.txt terminal output can be found
in this directory.

e¢?cemMmbd

45

More detailed output

Look into the more the "gemb/mbout/stats.txt” file

simSeconds
simTicks
finalTick
simFreq
hostSeconds
hostTickRate
hostMemory
simInsts
simOps
hostInstRate
hostOpRate

0.000005
4979349
4979349

1000000000000
0.08

64410071

1169600

6546
12944
84513
167067

e?cembd

46

Moditying our design!

Remember: gem5 is modular!
In general, you can replace components with components of the same type.

Let’s convert our basic “hello world” board into a Traffic generator board.

e?cembd

47

Generator

Traffic Generator

—

¢?cemb

Memory System

48

The ‘TestBoard’

Generator

And gemb does
the rest!

Let’s build onel

Go to “materials/traffic-generator.py”

Here we have imports, and some boilerplate code to run the
simulation. You're code will go in-between.

¢2cemb

50

Traffic generator: Setup our components

Setup the components.
memory = SingleChannelDDR3_1600("1GiB")
11 generator = RandomGenerator

=
S WO

AN AARAARN N AR AY

12 duration="250us",

13 rate="40GB/s",

14 num_cores=1,

152 max_addr=memory.get_sizel(),
16)

17| cache_hierarchy = NoCache()

e¢?cemb

51

Traffic generator: Connect them to the
TestBoard

19 # Add them to the Test board.
20 board = TestBoard(

1 | clk_freq="3GHz",

22 generator=generator,

23 memory=memory,

24| cache_hierarchy=cache_hierarchy,
2)

e¢?cemMmbd

52

Running the tratfic generator.

> gem5 materials/traffic-generator.py

This should be quite fast. What have we done?

V1

mM>D

D&

Let’s add a ‘fun” memory system

from gems, components.memory import HBM2Stack

2nd generation

Complete version can be found in High Bandwidth
“materials/complete/traffic-generator-hbm2stack.py” Memory stack

e¢?cembd)

More complex designs: An X86 full system
simulation in the stdlib

Move to "materials/x86-full-system.py. You should
see the following provided for you:

1 from gem5.utils.requires import requires

2 from gem5.components.boards.x86_board import X86Board

3 from gem5.components.memory.single_channel import SingleChannelDDR3_1600
4 from gems, components. cachehierarchies. ruby.mesi_two_level cache_hierarchy import (
5 MESITwoLevelCacheHierarchy,

6)

7. from gem5,components.processors.simple_switchable processor import |

8 SimpleSwitchableProcessor,

9)

10 from gem5.coherence_protocol import CoherenceProtocol

11 from gem5.isas import ISA

12 from gems.components.processors.cpu_types import CPUTypes

13 from gem5.resources.workload import Workload

14 from gem5.simulate.simulator import Simulator

15 from gem5.simulate.exit_event import ExitEvent

e¢?cemMmbd

ok

15
16
17
18

Adding the ‘requires’ function

requires |
15a reqgulired=ISA.X86,
coherence protocol required=CoherenceProtocol.MESI TWO LEVEL,

This adds a check for the gemb5 binary parsing the script. In this
case:

1. The binary supports the X86 ISA.
2. The binary supports the MESI Two Level coherence protocol.

e¢?cemMmbd

56

Extending the gembo library

21
22
23
24
25
26
27
28
29

35

11d size="32KiB",
1l1d assoc=8,

111 size="32KiB",
111 assoc=8,

12 size="256kB",
12 assoc=16,

num 12 banks=1,

memory = SingleChannelDDR3 1600("2GiB")

e¢?cemMmbd

57

Extending the gembo library

47 processor = SimpleSwitchableProcessor(

48 starting_core_type=CPUTypes.TIMING,
49 switch_core_type=CPUTypes.03,

50 num_cores=2,

51 isa=ISA.X86,

52)

The SimpleSwitchingProcessor allows for different
types of cores to be swapped during a simulation
with ‘processor.switch()'.

This can be useful when wanting to switch to and

from a detailed form of simulation. (Timing = less
detailed but fast; O3 = detailed but slow).

e?cembd

58

Extending the gembo library

50 board = X86Board|(

51 clk freg="3GHz",

52 processor=processor,

53 memory=memory,

54 cache hierarchy=cache hierarchy,
55)

As usual, we add the components to the board, in
this case an 'X86Board'.

e?cembd

59

Extending the gembo library

workload = Workload("x86-ubuntu-18.04-boot")

e?cembd

Extending the gembo library

"resources": |

{
"type" : "workload",

"name" : "x86-ubuntu-18.04-boot",

"documentation" : "A full boot of Ubuntu 18.04 with Linux 5.

for X86. It runs an m5 exit~ command when the boot is completed unless
readfile is specified. If specified the readfile will be executed after
booting.",
"function": "set kernel disk workload",
"resources" : {
"kernel" : "x86-linux-kernel-5.4.49",
"disk image":"x86-ubuntu-18.04-img"
}o

"additional params" : {}

b

http://resources.gemb.org/resources.json

e¢?cemMmbd

4.49
the

61

http://resources.gem5.org/resources.json

105
106
107
108
109
110
111
112

Extending the gembo library

command = (
"m5 exit;"
+ "echo 'This 1s running on 03 CPU cores.';"
+ "sleep 1;"
+ "m5 exit;"

workload.set_parameter("readfile_contents", command)

e?cembd

62

Extending the gembo library

board.set _workload(workload)

e?cembd

command

+ + +

it;" \

Exit Events

Note: This is module is still considered to be
in Beta. The APl may change in future
versions of gemb

"echo 'This 1is running on Timing CPU cores.';" \

"sleep 1;" \

¢2cemb

During a simulation you
can have "Exit Events".

In this example there are
two. These return the
simulation to the Python
Script.

64

The Simulation Loop

o ;_
Simulation

Exit Event

Simulation

Exit Event

The Simulator Module handles the loop!

31| simulator = Simulator(board=board)

32

33 simulator.run() # Runs up to the first m5 exit event
34

35| # Here we can do things between the exit event

36

37| processor.switch()

38

39 simulator.run() # Run up to the final m5 exit event

Here we can run up to an exit event, do
things, and then continue the run.

In this case we want to switch the CPU
cores.

e¢?cemMmbd

The

Simulator Module: We can do better

13 simulator = Simulator(
14 board=board,
15 X1t event={
16 ExitEvent.EXIT : (func() for func in [processor.switch]),
17 |
18)
19 simulator.run()
o ExitEvent.EXIT
Here we can specify exactly what to do » ExitEvent. CHECKPOINT
on each exit event type via Python * ExitEvent.FAIL
generators. « ExitEvent. SWITCHCPU
« ExitEvent. WORKBEGIN
The Simulator had default behavior for « ExitEvent WORKEND

these events, but they can be

« ExitEvent.USER_INTERRUPT

overridden. e ExitEvent. MAX_TICK

e¢?cemMmbd

67

Your done! You can now run your full-
system simulation

Warning: This will take a long
time to complete execution.

e?cembd

68

Simulation’s major pitfall: It's slloooww

5 >> 100k seconds on
Simulating 1 the host
Second

cemd

e?cembd)

Fortunately, there are some work arounds

Key idea: You don't
need to simulate

everything perfectly,
or at all.

Simulation Fidelity

Simulation Time

e¢?cembd ;

Some techniques we provide

- M

71

Simpoints/Looppoints

There’s a tutorial on
Looppoints this

afternoon in
Outremont 1

Discuss: What is a Simpointing?

e¢?cembd

72

Simpoints

Open “materials/simpoints-checkpoint.py”

¢s2cem>d

73

33
36
27
38
39
49
41
42
43
44
45

Simpoints

Setup the Simpoints workload
board.set_se_simpoint_workload(

binary=obtain_resource("x86-print-this"),

arguments=["print this", 15000],
simpoint=SimpointResource(

simpoint_interval=1000000,
simpoint_list=[2, 3, 4, 15],
weight_list=[0.1, 0.2, 0.4, 0.3],
warmup_interval=1000000,

e?cembd

74

47
48
49
50
51
52
53
54
55
56

Simpoints

dir = Path("simpoint-checkpoint-dir")
dir.mkdir(exist_ok=True)

Here we use the Simpoints generator to take the checkpoints.
When a Simpoint region, or warmup region, begins, a checkpoint is generated.
simulator = Simulator(

board=board,

on_exit_event={ExitEvent.SIMPOINT_BEGIN: save_checkpoint_generator(dir)},

e¢?cemMmbd

75

Simpoints

> gem5 materials/simpoint-checkpoint.py

76

Simpoints: Restoring

> gem5 materials/simpoints-restore.py

77

The gemb GPU Model

e¢?cemMmbd

Caveats

gembo Is a tool, not a panacea

Most models are not validated

|II

against “real” hardware

See “Architectural Simulators
Considered Harmful”

There are bugs!

79

Getting (more) help

Main gemb website: http://gem5.org/
More like this:

https://www.gemb.org/documentation/
learning gemoy/Iintroduction/

Mailing lists: http://gem5.org/Mailing Lists
gemb-users: General user questions
(vou probably want this one)

emb-dev: Mostly code reviews and high-

evel
dev talk

gemb> slack: https://join.slack.com/t/gemb-
workspace/shared_invite/zt-Tc8go4yjo-
LNb/1~BZ0FagwmVxX08y9g

e¢?cemMmbd

http://gem5.org/
https://www.gem5.org/documentation/learning_gem5/introduction/
https://www.gem5.org/documentation/learning_gem5/introduction/
http://gem5.org/Mailing_Lists
https://join.slack.com/t/gem5-workspace/shared_invite/zt-1c8go4yjo-LNb7l~BZ0FagwmVxX08y9g
https://join.slack.com/t/gem5-workspace/shared_invite/zt-1c8go4yjo-LNb7l~BZ0FagwmVxX08y9g
https://join.slack.com/t/gem5-workspace/shared_invite/zt-1c8go4yjo-LNb7l~BZ0FagwmVxX08y9g

References

Martin et al. 2005. Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. ACM SIGARCH Computer Architecture News.
https://doi.org/10.1145/1105734.1105747

Binkert et al. 2006. The M5 simulator: Modeling Networked Systems. I[EEE Micro.
https://doi.org/10.1109/MM.2006.82

Binkert, et al. 2011. The gemb simulator. S/IGARCH Comput. Archit. News 39
http://dx.doi.org/10.1145/2024716.2024718

Lowe-Power et al 2021. The gemb Simulator: Version 20.0+. ArXiv Preprint
ArXiv:2007.03152, 2021. https://doi.org/10.48550/arXiv.2007.03152

e¢?cemMmbd

81

https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1109/MM.2006.82
http://dx.doi.org/10.1145/2024716.2024718
https://doi.org/10.48550/arXiv.2007.03152

