
A bit of
everything else

Some other things about gem5

Cache models

gem5’s cache models

“Classic” caches

One model: Cache

Can be configured as a nested hierarchy

Replacement policies, prefetchers, etc.

Can be “mostly exclusive” or “mostly inclusive”

Fake, magic, coherence protocol

Good for functional simulation and low-fidelity memory systems simulation

Simple port interface, easy to configure in python

gem5’s cache models

Ruby & SLICC

High-fidelity, detailed coherence models

SLICC: A language to define state machines

Ruby: A set of models used in SLICC protocols

Lots of available protocols

MESI_Three_Level, MESI_Two_Level, MOESI_hammer, and more

See src/learning_gem5/part3 for a “simple” protocol

On-chip network and topology are parameters

SLICC specifies just the protocol

Makes configuring quite complex

CPU CPU CPU OtherDMA

RUBY

DRAM
Ctrl

DRAM
Ctrl

“Classic” ports

“Classic” ports

Ruby

L1 Cache
controller

L1 Cache
controller

L2 Cache
controller

Directory
controller

Directory
controller

DMA
Controller YYY

Controller

On-chip
interconnect

gem5’s cache models

CHI (Based on AMBA 5 CHI specification)

Ruby/SLICC-based model

Machines can be configured as different cache levels

Configurable like classic, but high-fidelity from Ruby

Expect to start seeing more CacheHierarchies implemented with CHI

Much more info on Ruby and SLICC:

https://www.gem5.org/documentation/learning_gem5/part3/MSIintro/

https://www.gem5.org/documentation/learning_gem5/part3/MSIintro/

Memory models

Memory controller:

Controller logic (MemCtrl) separate from timing (Interface)

Event-driven, high-fidelity, but not “cycle accurate”

Interfaces:

DDR(3/4), LPDDR(2,3,5), HBM (with pseudo channels), HMC

NVM (PCM-like)

Can also connect to DRAMSim3 and DRAMSys

CPU models

ISA independence

CPU model is independent of ISA

Any CPU model and work with any ISA (mostly)

Carefully designed API between ISA and CPU model

gem5 ISAs

src/arch/

amdgpu

arm

mips

power

riscv

sparc

x86

Not all equally well
supported. ARM, RISC-V
X86 most used/tested.

Each directory contains
devices, ISA-specific
objects, system
interface, ISA definition

ISA definition

src/arch/<isa>/isa

A domain-specific language for ISAs

Written in python (src/arch/isa_parser.py)

Honestly, very confusing, not much documentation

Output in build/…/generated

Decodes instructions (decoder/*.isa)

Implements instructions (insts/*.isa)

This is what is called when an instruction “executes” (we’ll see)

Creates “StaticInst” classes

StaticInst/ExecContext

StaticInst: Describes the kind of instruction (isNop(), isInteger(), etc.)

ExecContext: Interface for ISA definition to interact with CPU model

ThreadContext: Interface for devices/etc. to interact with architectural state

Provides implementation for execution (parameter: ExecContext)

execute(…)

initiateAcc(…)

completeAcc(…)

advancePC(…)

execute: Modify ExecContext based on instruction

initiateAcc: Send memory reference

completeAcc: Like execute for mem insts

advancePC: ISA-specific

CPU Models

gem5 exposes a flexible CPU interface

AtomicSimpleCPU: No timing. Fast-forwarding & cache warming.

TimingSimpleCPU: Single-cycle (IPC=1) except for memory ops.

O3CPU: Out-of-order model. Highly configurable.

MinorCPU: In-order model (not fully tested with x86)

kvmCPU: x86 and ARM support for native execution

Memory modes

Timing

Used for simulation

Calls sendTimingRequest, etc.

All timing is modeled

Atomic

No timing

Used for fast-forwarding

Some structures are warmed up

Atomic_noncaching

Used for KVM CPU

Directly manipulates the

backing memory

GPU and device models

AMD GPU

Supports GCN and VEGA

ROCm 4.X

Full system support

Many devices supported for FS simulation

Ethernet (and multi-system simulation)

VNC for graphics

IDE controllers for disks

No Mali GPU for ARM

VirtIO

Most devices are functional-only

Contributing
to gem5

Use gerrit for code review

See CONTRIBUTING.md

Everyone is welcome!

Some details from

Andreas Sandberg

How to structure your change

 What characterizes a good change?

Small: Smaller changes are easier to review and understand.

Well-defined: One commit == logical change

No unrelated changes: Don’t sneak bug fixes into feature commits

Descriptive commit message

Always use your real name and email in the commit meta data

 What characterizes a change that makes reviewers cringe?

Multiple changes going into the same commit “various bug fixes in Foo”

Large changes that could have been broken into incremental changes

Poorly written commit messages

The structure of a commit message

python: Move native wrappers to the _m5 namespace

Swig wrappers for native objects currently share the _m5.internal name
space with Python code. This is undesirable if we ever want to switch
from Swig to some other framework for native binding (e.g., PyBind11
or Boost::Python). This changeset moves all of such wrappers to the
_m5 namespace, which is now reserved for native code.

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>

Summary:

Body:

Meta data:

Commit message: Summary line

 Short summary of your change (max 65 characters)
Think of it as a subject in an email

 Should uniquely identify your change

 Typically the first thing a potential reviewer sees

 Sometimes the only information shown about a change

 Keywords used to identify affected components
See MAINTAINERS.yaml for details

python: Move native wrappers to the _m5 namespaceSummary:

Commit message: Body

 Should describe your change in detail – think of it as documentation

Reviewers will read this before they see any code

 Describe what the change does and why

Not necessarily how, that should be clear from the code

 Describe any implementation trade-offs

 Describe known limitations

 Describe testing done

Swig wrappers for native objects currently share the _m5.internal name
space with Python code. ...

Body:

Commit message: Metadata

 Change-Id: Unique ID used by Gerrit to identify the change (generated)

 Signed-off-by: It’s complicated…

 Reviewed-by: Use this to acknowledge reviewers (generated by Gerrit)

 Reviewed-on: Link to review request (generated by Gerrit)

 Reported-by: Use this to acknowledge users that report bugs

 Issue-on: Use this to reference a Jira issue
(https://gem5.atlassian.net/jira/software/c/projects/GEM5/issues/)

 Tested-by: Can be used to acknowledge testers

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>

Meta data:

Code submission flow

Post change for review

Reviewers
happy?

Update change

Wait for reviews

DoneCommit change

No

Yes

Apply stick to
reviewer

The job of a reviewer

 Evaluate technical aspects

Is it doing what it says in the commit message?

Is a technically sound implementation?

 Evaluate implementation aspects

Is the commit message describing the change?

Is it following the style guidelines?

 Legal aspects
Patch author’s responsibility, but reviewers should look out for obvious issues.

You are the reviewers!

Caveats

gem5 is a tool, not a panacea

Most models are not validated against

“real” hardware

See “Architectural Simulators

Considered Harmful”
https://doi.org/10.1109/MM.2015.74

There are bugs!

https://doi.org/10.1109/MM.2015.74

Getting (more) help
Main gem5 website: http://gem5.org/

More like this:

https://www.gem5.org/documentation/
learning_gem5/introduction/

Mailing lists: http://gem5.org/Mailing_Lists
gem5-users: General user questions

(you probably want this one)
gem5-dev: Mostly code reviews and high-level

dev talk

gem5 slack: https://tinyurl.com/gem5slackinvite

Jira issue tracker: https://gem5.atlassian.net/

2 6

http://gem5.org/
https://www.gem5.org/documentation/learning_gem5/introduction/
http://gem5.org/Mailing_Lists
https://tinyurl.com/gem5slackinvite
https://gem5.atlassian.net/

