
The gem5 
Standard Library

A presentation by 

Bobby R. Bruce



What is the standard library for?

gem5 Config file

When done without the library you must define 

every part of your simulation.

This allows for maximum flexibility but can mean 

creating 100s of lines of Python to create even a 

basic simulation.



What is the standard library for?

gem5 Config file

The stdlib is a library which allows for users to quickly create 

systems with pre-built components.

The stdlib's module architecture allows for components (e.g. a 

memory system or a cache hierarchy setup) to be quickly 

swapped in and out without radical redesign.

stdlib



The stdlib modular metaphor

Cache Hierarchy

Board

Memory Cache Hierarchy

SingleChannelD

DR3_1600

SingleChannelD

DR4_2400

...

Simple Processor

SwitchableProcessor

...

No Cache

PrivateL1PrivateL2

MesiTwoLevel

...



The modular architecture



Where to find stuff: The directory structure



Where to find stuff : Importing in a script



Getting started: Creating a "Hello World" in the 
stdlib

Open "materials/using-gem5/02-stdlib/hello-
world.py"

You should see the following:



Getting started: Creating a "Hello World" in the 
stdlib



Getting started: Creating a "Hello World" in the 
stdlib



gem5 Resources

• gem5 resources is a repository providing sources for artifacts that are known to be compatible 
with gem5.

• These resources are not necessary for the compilation or running gem5 but may aid users in 
running simulations. E.g.: disk images, kernels, applications, cross-compilers, etc.

• Resources are held on gem5's Google Cloud Bucket, and sources for these resources are found 
at: https://gem5.googlesource.com/public/gem5-resources/

• The stdlib can be used to automatically obtain and use these resources.

• https://resources.gem5.org/resources.json

https://gem5.googlesource.com/public/gem5-resources/
https://resources.gem5.org/resources.json


Looking up gem5 Resources

https://resources.gem5.org/resources.json

This is all machine-reachable for now. We're working on a web-portal.

https://resources.gem5.org/resources.json


Obtaining Resources in the stdlib

Open "materials/using-gem5/02-stdlib/obtaining-
resources.py"

Run this with `gem5-x86 materials/using-gem5/02-stdlib/obtaining-
resources.py`



Obtaining Resources in the stdlib

The stdlib will use the cached resources if already downloaded.



Using a Custom Resource

You don't need to use the gem5 resources

You can specify a local resources (e.g., your own disk image)



Getting started: Creating a "Hello World" in the 
stdlib

An `se_binary_workload` is running a board in Syscall Emulation mode, 

with a single binary

Back to "materials/using-gem5/02-stdlib/hello-world.py", add the 

following:



Getting started: Creating a "Hello World" in the 
stdlib

Append the following:



Getting started: Creating a "Hello World" in the 
stdlib



Getting started: Creating a "Hello World" in the 
stdlib

Save the file.

Run this example using: `gem5-x86 materials/using-gem5/02-stdlib/hello-
world.py`



More detailed output

Look into the more the ”gem5/m5out” directory

• The “config” files detail your 

system configuration (various 

formats, ”config.ini” most 

human-readable.

• The stats.txt shows the 

various simulation statistics.

• In Full-System simulations the 

terminal output can be found 

in this directory.



More detailed output

Look into the more the ”gem5/m5out/stats.txt” file



Extending our design

Remember: gem5 is modular!

In general, you can replace components with components of the same type.

Let's add a real cache implementation to our design!



Extending our design

Save the file again and run `gem5-x86 materials/using-gem5/02-
stdlib/hello-world.py`



More complex designs: An X86 full system 
simulation in the stdlib

Move to "materials/02-stdlib/x86-full-system.py. You 

should see the following provided for you:



Adding the 'requires' function

This adds a check for the gem5 binary parsing the script. In this 

case:

1. The binary supports the X86 ISA.

2. The binary supports the MESI Two Level coherence protocol.



Extending the gem5 library



Extending the gem5 library

The SimpleSwitchingProcessor allows for different 

types of cores to be swapped during a simulation 

with `processor.switch()`.

This can be useful when wanting to switch to and 

from a detailed form of simulation.



Extending the gem5 library

As usual, we add the components to the board, in 

this case an `X86Board`.



Extending the gem5 library

The 'set_kernel_disk_workload` is used to run a full system 

workload.

You must specify the `kernel` resource to use and the `disk 

image` resource.

In this case we can set the value of



Extending the gem5 library

Here is what's being run 

when the disk image is 

booted.

If `m5 readfile` returns a 

script, it's executed. 

Otherwise `m5 exit` is 

called.



The Simulator Module

Note: This is module is still considered to be 

in Beta. The API may change in future 

versions of gem5

During a simulation you 

can have "Exit Events".

In this example there are 

two. These return the 

simulation to the Python 

Script.



The Simulator Module

Here we can run up to an exit event, do 

things, and then continue the run.

In this case we want to switch the CPU 

cores.



The Simulator Module: We can do better

Here we can specify exactly what to do 

on each exit event type via Python 

generators.

The Simulator had default behavior for 

these events, but they can be 

overridden.

• ExitEvent.EXIT

• ExitEvent.CHECKPOINT

• ExitEvent.FAIL

• ExitEvent.SWITCHCPU

• ExitEvent.WORKBEGIN

• ExitEvent.WORKEND

• ExitEvent.USER_INTERRUPT

• ExitEvent.MAX_TICK



Your done! You can now run your full-system 
simulation

Warning: This will take a long 

time to complete execution.

`gem5-x86 materials/using-gem5/02-stdlib/x86-full-

system.py`



Expanding your design



Expanding your design

Open “materials/using-gem5/02-stdlib/unique_cache_hierarchy.py”



Expanding your design

Complete the constructor and declare the mem-side and cpu-side ports



Expanding your design

Let’s add a function to create an IO cache



Expanding your design
Finally, let’s implement “incorporate_cache”



Expanding your design



Expanding your design

To use this code, a user can import it as they would any other Python 
module.

As long as this code is in gem5’s python search path, you can import it.

You can also add:
`import sys; sys.path.append(<path to new component>)`

at the beginning of your gem5 runscript to add the path of this new 
component to the python search path.

Try using this cache with your “hello-world.py” script


