
gem5 Tutorial
Getting started with gem5

Jason Lowe-Power & Bobby Bruce

jlowepower/bbruce@ucdavis.edu

What is gem5?

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture as

well as processor microarchitecture.”

Lowe-Power et al. The gem5 Simulator: Version 20.0+. ArXiv Preprint ArXiv:2007.03152, 2021.
https://doi.org/10.48550/arXiv.2007.03152

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek
R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (August 2011), 1-7.
DOI=http://dx.doi.org/10.1145/2024716.2024718

Tutorial and book are open source!

https://www.gem5.org/documentation/learning_gem5/introduction/

Source: https://gem5.googlesource.com/public/gem5-website/

See a problem?

Submit a change request or open an issue

Want to add new material? Let me know!

Want to do your own version of this? Let me know! Creative commons license
Attribution 4.0

This tutorial

This is going to be interactive!

Trying something new with github codespaces and classroom

https://classroom.github.com/a/rV-jjuab

Work along with us for best results

Ask questions!!

https://classroom.github.com/a/rV-jjuab

Agenda

Introduction (8:30-8:45)

gem5 standard library (8:45-10:00)
Getting started with gem5
Understanding gem5 output
gem5 resources
Full system simulation
Extending the gem5 standard library

Developing with gem5 (10:00-10:30, coffee break, 11:00-11:30)
Building gem5
A simple SimObject
Debugging in gem5
Event-driven programming
Adding parameters

A bit of everything else (11:30-12:00)

The gem5 user’s workshop (1:30-5:00)

Introduction to
gem5

Downloading/building gem5

> git clone https://gem5.googlesource.com/public/gem5

> cd gem5

> scons build/X86/gem5.opt –j<number of threads>

> git clone https://gem5.googlesource.com/public/gem5

git: Version control system
https://git-scm.com/book/en/v2

googlesource: Main gem5
repo location (not github,
for now)

stable: The default branch for gem5.
Updated at stable releases.

develop is updated more frequently
(>1 per day)

https://git-scm.com/book/en/v2

> scons build/X86/gem5.opt –j17

scons: the build system
that gem5 uses (like
make). See
http://scons.org/

build/X86/gem5.opt: “parameter”
passed to scons. gem5’s Sconscript
interprets this. Also, the patch to
the gem5 executable.

X86: Specifies the
default build options.
See build_opts/*

opt: version of executable
to compile
(one of debug, opt, fast)

http://scons.org/

Let’s skip all that (for now)
https://classroom.github.com/a/rV-jjuab

https://classroom.github.com/a/rV-jjuab

Computer systems research/engineering

From Computer Architecture

Performance Evaluation Methods

by Lieven Eeckhout

Computer architecture simulation!

Kinds of simulation

Functional simulation
Executes programs correctly. Usually no timing information
Used to validate correctness of compilers, etc.
RISC-V Spike, QEMU, gem5 “atomic” mode

Instrumentation-based / Trace-based
Often binary translation. Runs on actual hardware with callbacks
If execution depends on timing, this will not work!
PIN, CMP$im, NVBit

Execution-driven
Functional and timing simulation is combined
gem5 and many others
gem5 is “execute in execute” or “timing directed”

Full system simulation

Components modeled with enough fidelity to run mostly unmodified apps

Often “Bare metal” simulation

All of the program is functionally emulated by the simulator

Often means running the OS in the simulator, not faking it

“Full system” simulators are often a combination of functional and full system

Nomenclature

Host: the actual hardware you’re using

Running things directly on the hardware:

Native execution

Guest: Code running on top of “fake” hardware

OS in virtual machine is guest OS

Running “on top of” hypervisor

Hypervisor is emulating hardware

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Virtual machines

Hypervisor

Guest

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host

Exposes hardware to the guest

Guest: Code running on simulated hardware

OS running on gem5 is guest OS

gem5 is simulating hardware

Simulator’s code: Runs natively

executes/emulates the guest code

Guest’s code: (or benchmark, workload, etc.)

Runs on gem5, not on the host.

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Simulation

gem5/Simulator

Guest

Workload

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host

Exposes hardware to the guest

Simulator’s performance:

Time to run the simulation on host

Wallclock time as you perceive it

Simulated performance:

Time predicted by the simulator

Time for guest code to run on simulator

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

gem5/Simulator

Guest

Simulation Workload

gem5 architecture

gem5 consists of “SimObjects”

Most C++ objects in gem5 inherit

from class SimObject

Represent physical system

components

SimObject

Model

C++ code in src/

Parameters

Python code in src/

In SimObject declaration file

Instance or configuration

A particular choice for the parameters

In standard library, your extensions, or python runscript

gem5 architecture

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

All SimObjects can enqueue
events to the event queue

We’ll cover more
after the break

What we’ve learned

gem5 is a

cycle-level

full-system

execution-driven

simulator

To obtain gem5, you need to

download the source with git

We’ll be using codespaces for this

tutorial

Next up

How to configure and run gem5

simulations with the standard

library

