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Plan for the day

▸ Intro
▹ Break

▸ Using gem5, standard library, and gem5-resources

▸ [Alen Sabu] Elfies and gem5
▹ Lunch

▸ Extending gem5
▹ Break

▸ [Matt S., Matt P., & Vishnu] Running ML workloads and 
gem5’s GPU model
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In this section we'll talk about gem5's history, the 
purpose and uses of computer architecture 
simulation, some nomeclature, and gem5's 
software architecture

Introduction



Outline

▸ What is gem5 and a bit of history

▸ My perspective on architecture simulation

▸ gem5’s (software) architecture

▸ Getting started using gem5
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Created at Michigan by students of Steve Reinhardt,
principally Nate Binkert.

“A tool for simulating systems”
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Created at Michigan by students of Steve Reinhardt,
principally Nate Binkert.

“A tool for simulating systems”

Created at Wisconsin by students of Mark Hill and David 
Wood.

Detailed memory system
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Created at Michigan by students of Steve Reinhardt,
principally Nate Binkert.

“A tool for simulating systems”

Created at Wisconsin by students of Mark Hill and David 
Wood.

Detailed memory system

9



What is gem5?

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-system 
architecture research, encompassing system-level architecture as well 

as processor microarchitecture.”

Lowe-Power et al. The gem5 Simulator: Version 20.0+. ArXiv Preprint ArXiv:2007.03152, 2021. 
https://doi.org/10.48550/arXiv.2007.03152

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, 
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 
2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (August 2011), 1-7. 
DOI=http://dx.doi.org/10.1145/2024716.2024718
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gem5-20+: A new era in CA simulation
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From Hennessey and Patterson
Turing Lecture

gem5’s goals
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gem5’s goals

▸ Anyone (including non-architect) can download and use gem5

▸ Used for cross-stack research:

Change kernel, change runtime, change hardware, all in concert

Run full ML stacks, full AR/VR stacks… other emerging apps

We’re close… just a lot of rough edges! You can help!
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The gem5 community

▸ 100s of contributors & 1000s(?) of users
▸ Aim to meet the needs of

Academic research (most of you all!)
Industry research and development
Classroom use

▸ Code of conduct (see repo)

▸ I want to see the community grow!



My views on 
simulation



Computer systems research/engineering

From Computer Architecture 
Performance Evaluation Methods
by Lieven Eeckhout

Computer architecture simulation!



Why simulation

▸ Need a tool to evaluate systems that don’t exist (yet)
Performance, power, energy, etc.

▸ Very costly to actually make the hardware

▸ Computer systems are complex with many interdependent parts
Not easy to be accurate without the full system

▸ Simulation can be parameterized
Design-space exploration
Sensitivity analysis



Alternatives to cycle-level simulation

Analytic models

Amdahl’s Law:

Queueing models: 



Kinds of simulation

▸ Functional simulation

▸ Instrumentation-based

▸ Trace-based

▸ Execution-driven

▸ Full system



Kinds of simulation

▸ Functional simulation
Executes programs correctly. Usually no timing information
Used to validate correctness of compilers, etc.
RISC-V Spike, QEMU, gem5 “atomic” mode

▸ Instrumentation
Often binary translation. Runs on actual hardware with callbacks
Like trace-based. Not flexible to new ISA. Some things opaque
PIN, NVBit



Kinds of simulation

▸ Trace-based simulation
Generate addresses/events and re-execute
Can be fast (no need to do functional simulation). Reuse traces
If execution depends on timing, this will not work!
“Specialized” simulators for single aspect (e.g., just cache hit/miss)

▸ Execution-driven
Functional and timing simulation is combined
gem5 and many others
gem5 is “execute in execute” or “timing directed”



Full system simulation

▸ Components modeled with enough fidelity to run mostly 
unmodified apps

▸ Often “Bare metal” simulation

▸ All of the program is functionally emulated by the simulator
▸ Often means running the OS in the simulator, not faking it

▸ “Full system” simulators are often combine functional and 
execution-based



Nomenclature

Host: the actual hardware you’re using
Running things directly on the hardware:

Native execution
Guest: Code running on top of “fake” 
hardware

OS in virtual machine is guest OS
Running “on top of” hypervisor
Hypervisor is emulating hardware

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Virtual machines

Hypervisor

Guest



Nomenclature

Host: the actual hardware you’re using
Simulator: Runs on the host

Exposes hardware to the guest
Guest: Code running on simulated hardware

OS running on gem5 is guest OS
gem5 is simulating hardware

Simulator’s code: Runs natively
executes/emulates the guest code

Guest’s code: (or benchmark, workload, etc.)
Runs on gem5, not on the host.

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Simulation

gem5/Simulator

Guest

Workload



Nomenclature

Host: the actual hardware you’re using
Simulator: Runs on the host

Exposes hardware to the guest
Simulator’s performance: 

Time to run the simulation on host
Wallclock time as you perceive it

Simulated performance:
Time predicted by the simulator
Time for guest code to run on simulator

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

gem5/Simulator

Guest

Simulation Workload



Tradeoffs

Development time: time to make the simulator/models
Evaluation time: wallclock time to run the simulator
Accuracy: How close is the simulator to real hardware
Coverage: How broadly can the simulator be used?

https://www.morganclaypool.com/doi/abs/10.2200/S00273ED1V01Y201006CAC010



What “level” should we simulate?

▸ Ask yourself: What fidelity is required for this 
question?

Example: New register file design
▸ Often, the answer is a mix.

▸ gem5 is well suited for this mix
Models with different fidelity
Drop-in replacements for each other

▸ “Cycle level” vs “cycle accurate”



RTL simulation

▸ RTL: Register transfer level/logic
The “model” is the hardware design
You specify every wire and every register
Close to the actual ASIC

▸ This is “cycle accurate” as it should be the same in the model and in 
an ASIC

▸ Very high fidelity, but at the cost of configurability
Need the entire design
More difficult to combine functional and timing



Cycle-level simulation

▸ Models the system cycle-by-cycle
▸ Often “event-driven” (we’ll see this soon)
▸ Can be quite accurate

Not the exact same cycle-by-cycle as the ASIC, but similar timing
▸ Easily parameterizeable

No need for a full hardware design
▸ Faster than cycle-accurate

Can “cheat” and functionally emulate some things



gem5’s architecture





gem5 architecture: SimObject

▸ Model
C++ code in src/

▸ Parameters
Python code in src/
In SimObject declaration file

▸ Instance or configuration
A particular choice for the parameters
In standard library, your extensions, or python runscript
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Model vs parameters 

▸ Generic model and timing in 
C++

▸ Expose parameters to 
Python

▸ Set parameters and 
connections in Python

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove



Some nomenclature

You can extend a model, to model new things
You would want to inherit from the object in C++

class O3CPU : public BaseCPU
{

You can specialize a model with specific parameters
You would want to inherit from the object in python

class i7CPU(O3CPU):
issue_width = 10



gem5 architecture: Simulating

gem5 is a discrete event simulator

36

1) Event at head 
dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55



gem5 architecture: Simulating

gem5 is a discrete event simulator

37

1) Event at head 
dequeued

2) Event executed

3) More events queued

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

All SimObjects can enqueue
events to the event queue

Event - 55

Event - 51



Discrete event simulation example

TIME

Fetch first inst

Send req to 
cache

Miss in L1, send to 
DRAM

Put in read Q

L1 tag latency To DRAM latency DRAM read latency

Get data from 
DRAM

Cache recvs data

Processor decodes 
instruction

Processor executes 
instruction

Fetch next 
inst

Response latency One cycle



Discrete event simulation

▸ "Time" needs a unit
In gem5, we use a unit called "Tick"

▸ Need to convert a simulation "tick" to user-understandable time
E.g., seconds

▸ This is the global simulation tick rate
Usually this is 1 ps per tick or 1012 ticks per second



gem5’s Main abstractions

▸ ISA vs CPU model & Memory request abstractions

▸ Ports allow you to send requests and receive responses
▹ Ports are unidirectional (two types, request/response)

▹ Anything* with a Request port can be connected to any Response port

CPU

Ports

L1 I$

L1 D$

L2 
$

X
B
A
R

Ports Ports

Memory 
Controller

Ports



gem5’s Main abstractions

▸ ISA vs CPU model & Memory requests abstractions

▸ CPU model abstracted from ISA
▹ Any* CPU model can be used with any* ISA

▹ ISA provides StaticInst with execute(), initiateAccess(), etc.

▹ If you implement the interface, you can add new CPU model or new ISA

CPU

Ports

L1 I$

L1 D$

L2 
$

X
B
A
R

Ports Ports

Memory 
Controller

Ports

ISA

Bytes to
decode

StaticInst
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