The gem5 Tutorial
@ISCA 2024

)

¢2cemb

> Plan for the day

» |Intro

> Break

Using gem5, standard library, and gem5-resources
[Alen Sabu] Elfies and gem5

> Lunch

Extending gem5

> Break

[Matt S., Matt P., & Vishnu] Running ML workloads and

gem5’s GPU model
&5 cems)

v

v

v

v

Introduction

In this section we'll talk about gem5's history, the
purpose and uses of computer architecture e m 5
simulation, some nomeclature, and gem5's

software architecture

} Outline

v

What is gem5 and a bit of history

v

My perspective on architecture simulation

v

gemb5’s (software) architecture

v

Getting started using gem5

edcembd

¢?cembd

Created at Michigan by students of Steve Reinhardt,
5 principally Nate Binkert.

“A tool for simulating systems”

Two Views of M5

1. A framework for event-driven simulation
= Events, objects, statistics, configuration

2. A collection of predefined object models
s CPUs, caches, busses, devices, etc.

 This tutorial focuses on #2
d You may find #1 useful even if #2 is not

June 5, 2005 ISCA 2005 Tutorial

edcemb

Created at Michigan by students of Steve Reinhardt,
5 principally Nate Binkert.

“A tool for simulating systems”

@ Muitifacet GEMS

General Execution-driven Multiprocessor Simulator

Created at Wisconsin by students of Mark Hill and David
Wood.

Detailed memory system

GEMS From 50,000 Feet

Random I —%_
Tester E g g o pa I
_ El|S eo0@®
Jg A A Ik ; Detailed
Y al|8
A<)k Microbhenchmarks

\

Slide 5 http:/lwww.cs.wisc.edu/gems

edcemb

Created at Michigan by students of Steve Reinhardt,
5 principally Nate Binkert.

“A tool for simulating systems”

@ Muitifacet GEMS

General Execution-driven Multiprocessor Simulator

Created at Wisconsin by students of Mark Hill and David
Wood.

Detailed memory system

} What is gem57?

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture as well
as processor microarchitecture.”

Lowe-Power et al. TheEemS Simulator: Version 20.0+. ArXiv Preprint ArXiv:2007.03152, 2021.
https://doi.org/10.48550/arXiv.2007.03152

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
2011. The gemb simulator. SSGARCH Comput. Archit. News 39, 2 (August 2011), 1-7.

DOI=http:ﬁdx.doi.org/10.1145/2024716. 024718

edcembd

} gemb5-20+: A new era in CA simulation

cembD Version 20.0

Abdul Mutaal Bagus Curtis Dunham Gabe Black Jakub Jermar Koan-Sin Tan Martinasso Nicolas Zea Riken Gohil Srikant Uri Wiener
Ahmad Hanindhito Dam Sunwoo Gabe Loh James Clarkson Korey Sewell Maximilian Stein Nikos Nikoleris Rizwana Begum Bharadwaj Victor Garcia
Adrian Herrera Benjamin Nash Dan Gibson Gabor Dozsa Jan-Peter Krishnendra Maximilien Nils Asmussen Robert Kovacsics Stan Czerniawski Vilas Sridharan
Adrien Pesle Bertrand Daniel Carvalho Gedare Bloom Larsson Nathella Breughe Nuwan Jayasena Robert Scheffel Stanislaw Vince Weaver
Adria Armejach Marquis Daniel Johnson Gene WU Jason Lowe- Lena Olson Michael Adler OlaJeppsson Rohit Kurup Czerniawski Vincentius
Akash Bagdia Binh Pham Daniel Sanchez Gene Wu Power Lisa Hsu Michael LeBeane Omar Naji Ron Dreslinski ~ Stephan Robby

Alec Roelke Bjoern A. Zeeb David Guillen- Geoffrey Blake Javier Bueno Lluc Alvarez Michael Pablo Prieto Ruben Diestelhorst Wade Walker
Alexandru D Blak I Fand § Kothei i luis Vil I Pall I] A 'tyan Stephen Hines Weiping Liao
Ali Jafri lolm Steve Raasch Wendy Elsasser
Ali Saidi

Amin Farma

Anders Hanc

Andrea Mon B

Andrea Pelle an Das Swapnil Harj

Andreas HanssoiiBrian Qiaysoii ROVvacevic Niiaiegiizaagen Jing wu WiaiCo civei ILCH ndyeiiga roiyaoios Saiti Galan Taeho Kgll

Andreas Cagdas Dirik Dongxue Zhang Hanhwi Jang Jiuyue Ma Marjan Fariborz Mohammad Petrakis Sascha Bischoff Tao Zhang

Sandberg Chander Dogukan Hoa Nguyen Joe Gross Matt DeVuyst Alian Pouya Fotouhi Sean McGoogan Thomas Grass

Andrew Bardsley Sudanthi Korkmazttrk Hongil Yoon Joel Hestness Matt Evans Monir Prakash Sean Wilson Tiago Muick

Andrew LukefahrChen Zou Dylan Johnson Hsuan Hsu John Alsop Matt Horsnell Mozumder Ramrakhyani Sergei Trofimov Tim Harris

Andrew Schultz Chris Adeniyi- Earl Ou Hussein John Matt Poremba Moyang Wang Pritha Ghoshal Severin Timothy Hayes

Andriani Jones Edmund Grimley ElInawawy Kalamatianos Matt Sinclair Mrinmoy Ghosh Radhika Jagtap Wischmann Timothy M.

Mappoura ChrisEmmons Evans lan Jiang JordiVaquero Matteo Nathan Binkert Rahul Thakur ~ Shawn Rosti Jones

Ani Udipi Christian MenardEmilio Castillo lanJiangICT Jose Marinho Andreozzi Nathanael Reiley Jeapaul Sherif Elhabbal Tom Jablin

Anis Peysieux Christoph Pfister Erfan Azarkhish llias Vougioukas Jui-min Lee Matteo M. Fusi Premillieu Rekai Gonzalez- Siddhesh Tommaso

Anouk Van Laer Christopher Eric Van Isaac Richter Kanishk Sugand Matthew Nayan Alberquilla Poyarekar Marinelli

Arthur Perais Torng Hensbergen Isaac Sanchez Karthik Sangaiah Poremba Deshmukh Rene de Jong Somayeh Tony Gutierrez sedzw
Ashkan Tousi Chuan Zhu Erik Hallnor Barrera Ke Meng Matthias Hille Neha Agarwal Ricardo Alves Sardashti Trivikram Reddy Eder F. Zulian
Austin Harris Chun-Chen Hsu Erik Tomusk Ivan Pizarro Kevin Brodsky atthias Jung icholas Lindsay Richard D. StrongSooraj Puthoor Tuan Ta

Avishai Tvila Ciro Santilli Faissal Sleiman Jack Whitham Kevin Lim gwgem las Richard Strong Sophiane Senni Tushar Krishna

Ayaz Akram Clint Smullen Fernando Endo Jairo Balart Khalique M umigny Rico Amslinger Soumyaroop Roy Umesh Bhaskar

} gem5’s goals

Agile Hardware Dev. Methodology

Application A\

g Big Chip

. = Tape-out

Runtime 3., —

P Compiler S
[{+] O
£ c
g Kernel o
5 3
B ISA =
2 2
@ HArch 3
o o
5 Devices g

From Hennessey and Patterson
Turing Lecture

edcembd ‘

} gem5’s goals
» Anyone (including non-architect) can download and use gem5
» Used for cross-stack research:
Change kernel, change runtime, change hardware, all in concert

Run full ML stacks, full AR/VR stacks... other emerging apps

We're close... just a lot of rough edges! You can help!

¢?cemb ‘

} The gem5 community

100s of contributors & 1000s(?) of users

Aim to meet the needs of
Academic research (most of you all!)
Industry research and development
Classroom use

Code of conduct (see repo)

v

v

v

v

| want to see the community grow!

edcembd

My views on

' simulation

¢?

cemd

b Computer systems research/engineering

(a) Scientific research (b) Systems research
a is Take hypothesis about .
C T aonment C envicnment From Computer Architecture
- - — {w : Performance Evaluation Methods
esign experiment Ssgn expenmean .
Picka andom samplo foma Piek badalioe daslge s by Lieven Eeckhout

Run experiment and quantify
Run experiment and quantify C Run ’""d‘r” z’; r’:“s“’ -) ~ . . .
L'_) """‘ 4 Computer architecture simulation!
C Interpret results) ‘ Interpret results '

v

If necessary, create new It necessary, propose new
hypothesis design

edcembd ‘

} Why simulation

v

Need a tool to evaluate systems that don’t exist (yet)
Performance, power, energy, etc.

Very costly to actually make the hardware

Computer systems are complex with many interdependent parts
Not easy to be accurate without the full system

Simulation can be parameterized
Design-space exploration
Sensitivity analysis

v

v

v

edcembd

} Alternatives to cycle-level simulation

Analytic models

Amdahl’'s Law: Satency (8) =

Queueing models: * — @"
de

} Kinds of simulation

» Functional simulation
» Instrumentation-based
» Trace-based

» Execution-driven

> Full system

} Kinds of simulation

» Functional simulation
Executes programs correctly. Usually no timing information
Used to validate correctness of compilers, etc.
RISC-V Spike, QEMU, gem5 “atomic” mode

» Instrumentation
Often binary translation. Runs on actual hardware with callbacks
Like trace-based. Not flexible to new ISA. Some things opaque
PIN, NVBit

¢?cemb ‘

} Kinds of simulation

» Trace-based simulation
Generate addresses/events and re-execute
Can be fast (no need to do functional simulation). Reuse traces
If execution depends on timing, this will not work!
“Specialized” simulators for single aspect (e.g., just cache hit/miss)

» Execution-driven
Functional and timing simulation is combined
gemb5 and many others
gemb is “execute in execute” or “timing directed”

edcembd

} Full system simulation

» Components modeled with enough fidelity to run mostly
unmodified apps

» Often “Bare metal” simulation
» All of the program is functionally emulated by the simulator
» Often means running the OS in the simulator, not faking it

|”

» “Full system” simulators are often combine functional and
execution-based

edcembd

} Nomenclature Your system

>
°
©

>
°

©

Host: the actual hardware you’re using e S Host

Running things directly on the hardware: ‘/
Native execution

Guest: Code running on top of “fake” Virtual machines

hardware

OS in virtual machine is guest OS App pp Guest

Running “on top of” hypervisor
Hypervisor is emulating hardware

Operating Sys.

Hypervisor Host

edcembd ‘

} Nomenclature Your system

>
°
©

>
°
©

H.ost: the actual hardware you’re using — Host
Simulator: Runs on the host
Exposes hardware to the guest ‘J

Guest: C%dse running on simLSII_ated hargvsvare
running on gem5 is guest : : Workl
gemb5 is simulating hardware Simulation O, L

Simulator’s code: Runs natively
executes/emulates the guest code Guest

Guest’s code: (or benchmark, workload, etc.) Operating Sys 4./
Runs on gem5, not on the host. '

>
g}
©

>
©
©

gem5/Simulator fplel}s

edcembd ‘

} Nomenclature Your system

H_ost: the actual hardware you’re using Host
Simulator: Runs on the host

Exposes hardware to the guest 4./
Simulator’s performance:

Time to run the simulation on host Simulation Workload

Wallclock time as you perceive it

Simulated performance:
Time predicted by the simulator /
Time for guest code to run on simulator Operating Sys.

P

Guest

>
g}
©

>
©
©

gem5/Simulator Jglely4

¢?2cem>d ‘

} Tradeoffs

Development time: time to make the simulator/models
Evaluation time: wallclock time to run the simulator
Accuracy: How close is the simulator to real hardware
Coverage: How broadly can the simulator be used?

Development time Evaluation time Accuracy = Coverage
functional simulation excellent good poor poor
instrumentation excellent very good poor poor
specialized cache and predictor simulation good good good limited
full trace-driven simulation poor poor very good excellent
tull execution-driven simulation Very poor Very poor excellent excellent

https://www.morganclaypool.com/doi/abs/10.2200/5S00273ED1V01Y201006CAC010

edcembd

} What “level” should we simulate?

» Ask yourself: What fidelity is required for this
guestion?

Example: New register file design
» Often, the answer is a mix.

» gemb is well suited for this mix
Models with different fidelity

Drop-in replacements for each other

» “Cycle level” vs “cycle accurate”

edcembd

(b) Systems research

Take hypothesis about
anvironment

Design experimant
Pick baseline design and
workloads

v

Run expeariment and quantify
Run model or measure
hardware

1 Interpret results f
If necessary, propose new
design

} RTL simulation

» RTL: Register transfer level/logic
The “model” is the hardware design
You specify every wire and every register
Close to the actual ASIC

» This is “cycle accurate” as it should be the same in the model and in
an ASIC

» Very high fidelity, but at the cost of configurability
Need the entire design
More difficult to combine functional and timing

¢?cemb ‘

} Cycle-level simulation

» Models the system cycle-by-cycle
» Often “event-driven” (we’ll see this soon)

» Can be quite accurate
Not the exact same cycle-by-cycle as the ASIC, but similar timing

» Easily parameterizeable
No need for a full hardware design

» Faster than cycle-accurate
Can “cheat” and functionally emulate some things

edcembd

gemb5’s architecture

¢?

cemd

)

C+k

\ —>5 0w b, 1_9&
Models %iﬁr@hh
(acke

LST.&QQM;WSZ Gz

Lere |

L7 Par wed=eS
W Ak

=
Sl

oRAN
[y, papamtes
"R
ks
L (RS

} gem5 architecture: SimObject

» Model
C++ code in src/

» Parameters
Python code in src/
In SimObject declaration file

» Instance or configuration
A particular choice for the parameters
In standard library, your extensions, or python runscript

¢?cemb ‘

(2]
Y
Front End Instruc tion) =
Cache Tag| L1 Instruction Cache \E
WOP Cachel 32KiB 8-Way m‘ =
Tag TLB 3
16 Bytes/cycle

Branch
Pred ictor | Ins truction Felch & PreDecode |

Model vs parameters SExaa;

MOF MOP MOP MOP MOR

Hcnoede Tyt
iy T S | R =
. L . . 4R 0P HOP HoP +OP Enagi
» Generic model and timing in o 5 e
Dpceded Stream Buffer (0581 o o T

(LOP Cache}

++ (2k LOPs; B-Way)
C (64 B window) L
=
o

Checker &

Retirement (CRU)

Registeralias Tables (RATs] Ho P uo P uoP HoP (-1 uoP

» Expose parameters to .
RAT RAT o Branch Order Buffer|
& (BOB) (48-entry)
Python o |
E— T T T |

P L ap P L3 ap ap oe o e

‘" * Scheduler VIE

To

T

ayoed 1

g71.1S payiun
Kep\-8 gICTS

» Set parameters and

: : i 2lie 2w 2l 2l ;
connections in Python e
EUs
LSU |L=m
Execotlon e T 2
64B/cycle 64B/cycle 64B/cycle 32B/cycle \.E
2
L3

L1 Data Cache [oo s]

gis en |5 48KiB 12-Way
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove g Memory Subsystam ‘™" %=t}

} Some nomenclature

You can extend a model, to model new things
You would want to inherit from the object in C++

%lass O3CPU : public BaseCPU
You can specialize a model with specific parameters
You would want to inherit from the object in python

class i7CPU(0O3CPU):
issue width = 10

edcembd

} gem5 architecture: Simulating

gemb5 is a discrete event simulator

Event Queue 1) Event at head
L dequeued
@ 2) Event executed
— 3) More events queued

edcemb ‘

} gem5 architecture: Simulating

gemb5 is a discrete event simulator

Event Queue

Event - 50

Event - 20

1) Event at head
L dequeued

2) Event executed

3) More events queued

All SimObjects can enqueue
events to the event queue

¢?2cemd

y

} Discrete event simulation example

Fetch first inst Missin L1, send to Putinread Q Get data from

DRAM DRAM Cache recvs data

Send req to
cache Processor decodes

instruction

Processor executes
instruction

L1 tag latency To DRAM latency DRAM read latencyl Response latency ' One cycle

edcembd

} Discrete event simulation

» "Time" needs a unit
In gem5, we use a unit called "Tick"

» Need to convert a simulation "tick" to user-understandable time
E.g., seconds

» This is the global simulation tick rate
Usually this is 1 ps per tick or 102 ticks per second

edcembd

> gemb5’s Main abstractions

> ISA vs CPU model & Memory request abstractions
» Ports allow you to send requests and receive responses

> Ports are unidirectional (two types, request/response)

> Anything* with a Request port can be connected to any Response port

Memory
Controller

Ports Ports Ports Ports

edcembd

> gemb5’s Main abstractions

» ISA vs CPU model & Memory requests abstractions

» CPU model abstracted from ISA
> Any* CPU model can be used with any* ISA

> |ISA provides Staticlnst with execute(), initiateAccess(), etc.

> If you implement the interface, you can add new CPU model or new ISA

Bytes to
decode

Memory
Controller

Staticlnst

Ports Ports Ports Ports

edcembd

	Slide 1: The gem5 Tutorial @ISCA 2024
	Slide 2: Plan for the day
	Slide 3: Introduction
	Slide 4: Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: What is gem5?
	Slide 11: gem5-20+: A new era in CA simulation
	Slide 12: Version 20.0
	Slide 13: gem5’s goals
	Slide 14: gem5’s goals
	Slide 15: The gem5 community
	Slide 16: My views on simulation
	Slide 17: Computer systems research/engineering
	Slide 18: Why simulation
	Slide 19: Alternatives to cycle-level simulation
	Slide 20: Kinds of simulation
	Slide 21: Kinds of simulation
	Slide 22: Kinds of simulation
	Slide 23: Full system simulation
	Slide 24: Nomenclature
	Slide 25: Nomenclature
	Slide 26: Nomenclature
	Slide 27: Tradeoffs
	Slide 28: What “level” should we simulate?
	Slide 29: RTL simulation
	Slide 30: Cycle-level simulation
	Slide 31: gem5’s architecture
	Slide 32
	Slide 33: gem5 architecture: SimObject
	Slide 34: Model vs parameters
	Slide 35: Some nomenclature
	Slide 36: gem5 architecture: Simulating
	Slide 37: gem5 architecture: Simulating
	Slide 38: Discrete event simulation example
	Slide 39: Discrete event simulation
	Slide 40: gem5’s Main abstractions
	Slide 41: gem5’s Main abstractions

