
The gem5 Tutorial
@ISCA 2024



Plan for the day

▸ Intro
▹ Break

▸ Using gem5, standard library, and gem5-resources

▸ [Alen Sabu] Elfies and gem5
▹ Lunch

▸ Extending gem5
▹ Break

▸ [Matt S., Matt P., & Vishnu] Running ML workloads and 
gem5’s GPU model

2



In this section we'll talk about gem5's history, the 
purpose and uses of computer architecture 
simulation, some nomeclature, and gem5's 
software architecture

Introduction



Outline

▸ What is gem5 and a bit of history

▸ My perspective on architecture simulation

▸ gem5’s (software) architecture

▸ Getting started using gem5



5

Created at Michigan by students of Steve Reinhardt,
principally Nate Binkert.

“A tool for simulating systems”



6



Created at Michigan by students of Steve Reinhardt,
principally Nate Binkert.

“A tool for simulating systems”

Created at Wisconsin by students of Mark Hill and David 
Wood.

Detailed memory system

7



8



Created at Michigan by students of Steve Reinhardt,
principally Nate Binkert.

“A tool for simulating systems”

Created at Wisconsin by students of Mark Hill and David 
Wood.

Detailed memory system

9



What is gem5?

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-system 
architecture research, encompassing system-level architecture as well 

as processor microarchitecture.”

Lowe-Power et al. The gem5 Simulator: Version 20.0+. ArXiv Preprint ArXiv:2007.03152, 2021. 
https://doi.org/10.48550/arXiv.2007.03152

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, 
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 
2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (August 2011), 1-7. 
DOI=http://dx.doi.org/10.1145/2024716.2024718

10



gem5-20+: A new era in CA simulation



12

Version 20.0
Abdul Mutaal
Ahmad
Adrian Herrera
Adrien Pesle

Adrià Armejach
Akash Bagdia
Alec Roelke
Alexandru Dutu
Ali Jafri

Ali Saidi
Amin Farmahini
Anders Handler
Andrea Mondelli
Andrea Pellegrini

Andreas Hansson
Andreas 
Sandberg
Andrew Bardsley
Andrew Lukefahr

Andrew Schultz
Andriani
Mappoura
Ani Udipi
Anis Peysieux

Anouk Van Laer
Arthur Perais
Ashkan Tousi
Austin Harris
Avishai Tvila

Ayaz Akram

Bagus
Hanindhito
Benjamin Nash
Bertrand 

Marquis
Binh Pham
Bjoern A. Zeeb
Blake Hechtman
Bobby R. Bruce

Boris Shingarov
Brad Beckmann
Brad Danofsky
Bradley Wang
Brandon Potter

Brian Grayson
Cagdas Dirik
Chander
Sudanthi
Chen Zou

Chris Adeniyi-
Jones
Chris Emmons
Christian Menard
Christoph Pfister

Christopher 
Torng
Chuan Zhu
Chun-Chen Hsu
Ciro Santilli

Clint Smullen

Curtis Dunham
Dam Sunwoo
Dan Gibson
Daniel Carvalho

Daniel Johnson
Daniel Sanchez
David Guillen-
Fandos
David Hashe

David Oehmke
Derek Hower
Deyaun Guo
Dibakar Gope
Djordje

Kovacevic
Dongxue Zhang
Doğukan
Korkmaztürk
Dylan Johnson

Earl Ou
Edmund Grimley 
Evans
Emilio Castillo
Erfan Azarkhish

Eric Van 
Hensbergen
Erik Hallnor
Erik Tomusk
Faissal Sleiman

Fernando Endo

Gabe Black
Gabe Loh
Gabor Dozsa
Gedare Bloom

Gene WU
Gene Wu
Geoffrey Blake
Georg Kotheimer
Giacomo 

Gabrielli
Giacomo 
Travaglini
Glenn Bergmans
Hamid Reza 

Khaleghzadeh
Hanhwi Jang
Hoa Nguyen
Hongil Yoon
Hsuan Hsu

Hussein 
Elnawawy
Ian Jiang
IanJiangICT
Ilias Vougioukas

Isaac Richter
Isaac Sánchez 
Barrera
Ivan Pizarro
Jack Whitham

Jairo Balart

Jakub Jermar
James Clarkson
Jan-Peter 
Larsson

Jason Lowe-
Power
Javier Bueno 
Hedo
Javier Cano-Cano

Javier Setoain
Jayneel Gandhi
Jennifer 
Treichler
Jieming Yin

Jing Qu
Jiuyue Ma
Joe Gross
Joel Hestness
John Alsop

John 
Kalamatianos
Jordi Vaquero
Jose Marinho
Jui-min Lee

Kanishk Sugand
Karthik Sangaiah
Ke Meng
Kevin Brodsky
Kevin Lim

Khalique

Koan-Sin Tan
Korey Sewell
Krishnendra
Nathella

Lena Olson
Lisa Hsu
Lluc Alvarez
Lluís Vilanova
Mahyar Samani

Malek Musleh
Marc Mari 
Barcelo
Marc Orr
Marco Balboni

Marco Elver
Marjan Fariborz
Matt DeVuyst
Matt Evans
Matt Horsnell

Matt Poremba
Matt Sinclair
Matteo 
Andreozzi
Matteo M. Fusi

Matthew 
Poremba
Matthias Hille
Matthias Jung
Maurice Becker

Maxime 

Martinasso
Maximilian Stein
Maximilien 
Breughe

Michael Adler
Michael LeBeane
Michael 
Levenhagen
Michiel Van Tol

Miguel Serrano
Mike Upton
Miles Kaufmann
Min Kyu Jeong
Mingyuan

Mitch Hayenga
Mohammad 
Alian
Monir 
Mozumder

Moyang Wang
Mrinmoy Ghosh
Nathan Binkert
Nathanael 
Premillieu

Nayan
Deshmukh
Neha Agarwal
Nicholas Lindsay
Nicolas 

Derumigny

Nicolas Zea
Nikos Nikoleris
Nils Asmussen
Nuwan Jayasena

Ola Jeppsson
Omar Naji
Pablo Prieto
Palle Lyckegaard
Pau Cabre

Paul Rosenfeld
Peter Enns
Pin-Yen Lin
Po-Hao Su
Polina Dudnik

Polydoros
Petrakis
Pouya Fotouhi
Prakash 
Ramrakhyani

Pritha Ghoshal
Radhika Jagtap
Rahul Thakur
Reiley Jeapaul
Rekai Gonzalez-

Alberquilla
Rene de Jong
Ricardo Alves
Richard D. Strong
Richard Strong

Rico Amslinger

Riken Gohil
Rizwana Begum
Robert Kovacsics
Robert Scheffel

Rohit Kurup
Ron Dreslinski
Ruben 
Ayrapetyan
Rune Holm

Ruslan Bukin
Rutuja Oza
Ryan Gambord
Samuel Grayson
Sandipan Das

Santi Galan
Sascha Bischoff
Sean McGoogan
Sean Wilson
Sergei Trofimov

Severin 
Wischmann
Shawn Rosti
Sherif Elhabbal
Siddhesh

Poyarekar
Somayeh 
Sardashti
Sooraj Puthoor
Sophiane Senni

Soumyaroop Roy

Srikant 
Bharadwaj
Stan Czerniawski
Stanislaw 

Czerniawski
Stephan 
Diestelhorst
Stephen Hines
Steve Raasch

Steve Reinhardt
Stian Hvatum
Sudhanshu Jha
Sujay Phadke
Swapnil Haria

Taeho Kgil
Tao Zhang
Thomas Grass
Tiago Mück
Tim Harris

Timothy Hayes
Timothy M. 
Jones
Tom Jablin
Tommaso 

Marinelli
Tony Gutierrez
Trivikram Reddy
Tuan Ta
Tushar Krishna

Umesh Bhaskar

Uri Wiener
Victor Garcia
Vilas Sridharan
Vince Weaver

Vincentius
Robby
Wade Walker
Weiping Liao
Wendy Elsasser

William Wang
Willy Wolff
Xiangyu Dong
Xianwei Zhang
Xiaoyu Ma

Xin Ouyang
Yasuko Eckert
Yi Xiang
Yifei Liu
Yu-hsin Wang

Yuan Yao
Yuetsu Kodama
Zhang Zheng
Zicong Wang
jiegec

m5test
seanzw
Éder F. Zulian

Your name here!



From Hennessey and Patterson
Turing Lecture

gem5’s goals

13



gem5’s goals

▸ Anyone (including non-architect) can download and use gem5

▸ Used for cross-stack research:

Change kernel, change runtime, change hardware, all in concert

Run full ML stacks, full AR/VR stacks… other emerging apps

We’re close… just a lot of rough edges! You can help!

14



The gem5 community

▸ 100s of contributors & 1000s(?) of users
▸ Aim to meet the needs of

Academic research (most of you all!)
Industry research and development
Classroom use

▸ Code of conduct (see repo)

▸ I want to see the community grow!



My views on 
simulation



Computer systems research/engineering

From Computer Architecture 
Performance Evaluation Methods
by Lieven Eeckhout

Computer architecture simulation!



Why simulation

▸ Need a tool to evaluate systems that don’t exist (yet)
Performance, power, energy, etc.

▸ Very costly to actually make the hardware

▸ Computer systems are complex with many interdependent parts
Not easy to be accurate without the full system

▸ Simulation can be parameterized
Design-space exploration
Sensitivity analysis



Alternatives to cycle-level simulation

Analytic models

Amdahl’s Law:

Queueing models: 



Kinds of simulation

▸ Functional simulation

▸ Instrumentation-based

▸ Trace-based

▸ Execution-driven

▸ Full system



Kinds of simulation

▸ Functional simulation
Executes programs correctly. Usually no timing information
Used to validate correctness of compilers, etc.
RISC-V Spike, QEMU, gem5 “atomic” mode

▸ Instrumentation
Often binary translation. Runs on actual hardware with callbacks
Like trace-based. Not flexible to new ISA. Some things opaque
PIN, NVBit



Kinds of simulation

▸ Trace-based simulation
Generate addresses/events and re-execute
Can be fast (no need to do functional simulation). Reuse traces
If execution depends on timing, this will not work!
“Specialized” simulators for single aspect (e.g., just cache hit/miss)

▸ Execution-driven
Functional and timing simulation is combined
gem5 and many others
gem5 is “execute in execute” or “timing directed”



Full system simulation

▸ Components modeled with enough fidelity to run mostly 
unmodified apps

▸ Often “Bare metal” simulation

▸ All of the program is functionally emulated by the simulator
▸ Often means running the OS in the simulator, not faking it

▸ “Full system” simulators are often combine functional and 
execution-based



Nomenclature

Host: the actual hardware you’re using
Running things directly on the hardware:

Native execution
Guest: Code running on top of “fake” 
hardware

OS in virtual machine is guest OS
Running “on top of” hypervisor
Hypervisor is emulating hardware

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Virtual machines

Hypervisor

Guest



Nomenclature

Host: the actual hardware you’re using
Simulator: Runs on the host

Exposes hardware to the guest
Guest: Code running on simulated hardware

OS running on gem5 is guest OS
gem5 is simulating hardware

Simulator’s code: Runs natively
executes/emulates the guest code

Guest’s code: (or benchmark, workload, etc.)
Runs on gem5, not on the host.

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Simulation

gem5/Simulator

Guest

Workload



Nomenclature

Host: the actual hardware you’re using
Simulator: Runs on the host

Exposes hardware to the guest
Simulator’s performance: 

Time to run the simulation on host
Wallclock time as you perceive it

Simulated performance:
Time predicted by the simulator
Time for guest code to run on simulator

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

gem5/Simulator

Guest

Simulation Workload



Tradeoffs

Development time: time to make the simulator/models
Evaluation time: wallclock time to run the simulator
Accuracy: How close is the simulator to real hardware
Coverage: How broadly can the simulator be used?

https://www.morganclaypool.com/doi/abs/10.2200/S00273ED1V01Y201006CAC010



What “level” should we simulate?

▸ Ask yourself: What fidelity is required for this 
question?

Example: New register file design
▸ Often, the answer is a mix.

▸ gem5 is well suited for this mix
Models with different fidelity
Drop-in replacements for each other

▸ “Cycle level” vs “cycle accurate”



RTL simulation

▸ RTL: Register transfer level/logic
The “model” is the hardware design
You specify every wire and every register
Close to the actual ASIC

▸ This is “cycle accurate” as it should be the same in the model and in 
an ASIC

▸ Very high fidelity, but at the cost of configurability
Need the entire design
More difficult to combine functional and timing



Cycle-level simulation

▸ Models the system cycle-by-cycle
▸ Often “event-driven” (we’ll see this soon)
▸ Can be quite accurate

Not the exact same cycle-by-cycle as the ASIC, but similar timing
▸ Easily parameterizeable

No need for a full hardware design
▸ Faster than cycle-accurate

Can “cheat” and functionally emulate some things



gem5’s architecture





gem5 architecture: SimObject

▸ Model
C++ code in src/

▸ Parameters
Python code in src/
In SimObject declaration file

▸ Instance or configuration
A particular choice for the parameters
In standard library, your extensions, or python runscript

33



Model vs parameters 

▸ Generic model and timing in 
C++

▸ Expose parameters to 
Python

▸ Set parameters and 
connections in Python

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove



Some nomenclature

You can extend a model, to model new things
You would want to inherit from the object in C++

class O3CPU : public BaseCPU
{

You can specialize a model with specific parameters
You would want to inherit from the object in python

class i7CPU(O3CPU):
issue_width = 10



gem5 architecture: Simulating

gem5 is a discrete event simulator

36

1) Event at head 
dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55



gem5 architecture: Simulating

gem5 is a discrete event simulator

37

1) Event at head 
dequeued

2) Event executed

3) More events queued

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

All SimObjects can enqueue
events to the event queue

Event - 55

Event - 51



Discrete event simulation example

TIME

Fetch first inst

Send req to 
cache

Miss in L1, send to 
DRAM

Put in read Q

L1 tag latency To DRAM latency DRAM read latency

Get data from 
DRAM

Cache recvs data

Processor decodes 
instruction

Processor executes 
instruction

Fetch next 
inst

Response latency One cycle



Discrete event simulation

▸ "Time" needs a unit
In gem5, we use a unit called "Tick"

▸ Need to convert a simulation "tick" to user-understandable time
E.g., seconds

▸ This is the global simulation tick rate
Usually this is 1 ps per tick or 1012 ticks per second



gem5’s Main abstractions

▸ ISA vs CPU model & Memory request abstractions

▸ Ports allow you to send requests and receive responses
▹ Ports are unidirectional (two types, request/response)

▹ Anything* with a Request port can be connected to any Response port

CPU

Ports

L1 I$

L1 D$

L2 
$

X
B
A
R

Ports Ports

Memory 
Controller

Ports



gem5’s Main abstractions

▸ ISA vs CPU model & Memory requests abstractions

▸ CPU model abstracted from ISA
▹ Any* CPU model can be used with any* ISA

▹ ISA provides StaticInst with execute(), initiateAccess(), etc.

▹ If you implement the interface, you can add new CPU model or new ISA

CPU

Ports

L1 I$

L1 D$

L2 
$

X
B
A
R

Ports Ports

Memory 
Controller

Ports

ISA

Bytes to
decode

StaticInst


	Slide 1: The gem5 Tutorial @ISCA 2024
	Slide 2: Plan for the day
	Slide 3: Introduction
	Slide 4: Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: What is gem5?
	Slide 11: gem5-20+: A new era in CA simulation
	Slide 12: Version 20.0
	Slide 13: gem5’s goals
	Slide 14: gem5’s goals
	Slide 15: The gem5 community
	Slide 16: My views on simulation
	Slide 17: Computer systems research/engineering
	Slide 18: Why simulation
	Slide 19: Alternatives to cycle-level simulation
	Slide 20: Kinds of simulation
	Slide 21: Kinds of simulation
	Slide 22: Kinds of simulation
	Slide 23: Full system simulation
	Slide 24: Nomenclature
	Slide 25: Nomenclature
	Slide 26: Nomenclature
	Slide 27: Tradeoffs
	Slide 28: What “level” should we simulate?
	Slide 29: RTL simulation
	Slide 30: Cycle-level simulation
	Slide 31: gem5’s architecture
	Slide 32
	Slide 33: gem5 architecture: SimObject
	Slide 34: Model vs parameters 
	Slide 35: Some nomenclature
	Slide 36: gem5 architecture: Simulating
	Slide 37: gem5 architecture: Simulating
	Slide 38: Discrete event simulation example
	Slide 39: Discrete event simulation
	Slide 40: gem5’s Main abstractions
	Slide 41: gem5’s Main abstractions

