
In this section, we will learn how to build a system
to simulate using gem5's standard
library, extend the standard library, use the
simulator class to improve simulation
performance, and use gem5 resources

gem5 standard library

Outline

▸ Standard library concepts

▸ Using components module

▸ Using the simulator module

▸ KVM

▸ Checkpointing

▸ Using gem5 resources

Setting up simulations

3

gem5 Config file

This allows for maximum flexibility but
can mean creating 100s of lines of
Python to create even a basic
simulation.

What is the standard library for?

4

gem5 Config file

The stdlib is a library which allows for users to quickly create systems with pre-
built components.

The stdlib's module architecture allows for components (e.g. a memory system or
a cache hierarchy setup) to be quickly swapped in and out without radical

redesign.

stdlib

The stdlib modular metaphor

Processor

Board

Memory Cache Hierarchy

SingleChannelDDR3
_1600

SingleChannelDDR4
_2400

...

Simple Processor

SwitchableProcessor

...

No Cache

PrivateL1PrivateL2

MesiTwoLevel

...

Let’s build using components!

6

Open “materials/02-components.py” You’ll see

the above already prepared for you.

from gem5.components.boards.simple_board import SimpleBoard
from gem5.components.cachehierarchies.classic.private_l1_shared_l2_cache_hierarchy import (

PrivateL1SharedL2CacheHierarchy,
)
from gem5.components.memory.single_channel import SingleChannelDDR4_2400
from gem5.components.processors.cpu_types import CPUTypes
from gem5.components.processors.simple_processor import SimpleProcessor
from gem5.isas import ISA
from gem5.resources.resource import obtain_resource
from gem5.simulate.simulator import Simulator

Choose a cache, memory, & processor

7

main_memory = SingleChannelDDR4_2400(size="2GB")
caches = PrivateL1SharedL2CacheHierarchy(

l1d_size="32KiB",
l1d_assoc=8,
l1i_size="32KiB",
l1i_assoc=8,
l2_size="256KiB",
l2_assoc=16,

)
simple_in_order_core = SimpleProcessor(

cpu_type=CPUTypes.TIMING, num_cores=1, isa=ISA.X86
)

Quick note on SimpleProcessor

▸ This does not model any particular processor

▸ It’s simple to allow you to get started

▸ Don’t use this for research if you care about CPU performance

8

Then let’s plug them into a board

9

board = SimpleBoard(
processor=simple_in_order_core,
memory=main_memory,
cache_hierarchy=caches,
clk_freq="3GHz",

)

Load a workload into the board

10

board.set_workload(obtain_resource("x86-npb-is-size-s-run"))

Search gem5 resources for more workloads

Run the simulator

11

> gem5 materials/02-components.py

A completed version of the configuration can

be found in “materials/isca24/completed/02-

components.py”

To run

12

> gem5 materials/02-components.py

This will take about 40 seconds

Components included in gem5

▸ gem5 stdlib in src/python/gem5

▸ Two types
▹ Prebuilt: full systems with set parameters

▹ Components: Components to build
systems

▸ Prebuilt
▹ Demo: Just examples to build off of

▹ riscvmatched: Models SiFive Unmatched

13

gem5/src/python/gem5/components
----/boards
----/cachehierarchies
----/memory
----/processors

gem5/src/python/gem5/prebuilt
----/demo/x86_demo_board
----/riscvmatched

Components: Boards

▸ Boards: Things to plug into
▹ Have “set_workload” and

“connect_things”

▸ Simple: SE-only, configurable

▸ Arm, RISC-V, and X86 versions
for full system simulation

14

gem5/src/python/gem5/components
----/boards

----/simple
----/arm_board
----/riscv_board
----/x86_board

----/cachehierarchies
----/memory
----/processors

Components: Cache hierarchies

▸ Have fixed interface to
processors and memory

▸ Ruby: detailed cache coherence
and interconnect

▸ CHI: Arm CHI-based protocol
implemented in Ruby

▸ Classic caches: Hierarchy of
crossbars with inflexible
coherence

15

gem5/src/python/gem5/components
----/boards
----/cachehierarchies

----/chi
----/classic
----/ruby

----/memory
----/processors

Components: Cache hierarchies

▸ Quick caveat… You need different gem5 binaries for different
protocols

▸ Any binary can use “classic” caches

▸ Only one Ruby protocol per gem5 binary
▹ gem5: CHI (Fully configurable; based on Arm CHI)

▹ gem5-mesi: MESI_Two_Level (Private L1s, Shared L2)

▹ gem5-vega: GPU_VIPER (CPU: Private L1/L2 core pairs, shared L3; GPU: Private L1,
shared L2)

16

Components: Memory

▸ Preconfigured (LP)DDR3/4/5
DIMMs
▹ Single and multi channel

▸ Integration with DRAMSim and
DRAMSys
▹ Not needed for accuracy, but useful for

comparisons

▸ HBM: An HBM stack

17

gem5/src/python/gem5/components
----/boards
----/cachehierarchies
----/memory

----/single_channel
----/multi_channel
----/dramsim
----/dramsys
----/hbm

----/processors

Components: Processors

▸ Mostly “configurable”
processors to build off of

▸ Generators
▹ Synthetic traffic, but act like processors

▸ Simple
▹ Only default parameters, one ISA

▸ Switchable
▹ We’ll see this later, but you can switch

from one to another

18

gem5/src/python/gem5/components
----/boards
----/cachehierarchies
----/memory
----/processors

----/generators
----/simple
----/switchable

Components: Processors

▸ Processors are made up of “cores”

▸ Cores have a “BaseCPU” as a member

▸ Processor is what interfaces with CacheHierarchy and Board

19

Components: Processors

▸ gem5 has three (or four or five) different processor models

▸ O3CPU:
▹ Out-of-order CPU with ROB, BP, Physical register file, etc.

▹ Highly configurable, but not very accurate to modern cores

▸ MinorCPU:
▹ In-order CPU with 4 stage pipeline, BP, etc.

▹ Highly configurable, similar to modern high-performance in-order designs

▸ SimpleCPU:
▹ TimingSimpleCPU: Every instruction takes 0 cycles (just fetch time) except memory

▹ AtomicSimpleCPU: Used in atomic mode (more later)

▸ KVMCPU: more later

20

Components: Processors

▸ O3CPU and MinorCPU are highly configurable

▸ See “BaseO3CPU.py” and “BaseMinorCPU.py”

▸ Each instructions type can have its own functional unit
▹ Or one functional unit for many instruction types

▹ Functional units can specify the latency and pipeline latency

▸ Many other options as well

21

Standard Library components

▸ Designed around Extension and Encapsulation
▹ NOT designed for “parameterization”

▸ If you want to create a processor/cache hierarchy/etc. with
different parameters
▹ Extend using object-oriented semantics

▸ Let’s see and example

22

Quick reminder of gem5’s architecture

▸ We will now create a
new component

▸ Specialize/extend the
“BaseO3CPU” (core)

23

Let’s create a processor with OOO cores

▸ Use materials/isca24/03-processor.py

▸ Mostly the same as before, but now

24

my_ooo_processor = MyOutOfOrderProcessor(
width=8, rob_size=192, num_int_regs=256, num_fp_regs=256

)

self.core.fetchWidth = width
self.core.decodeWidth = width
self.core.renameWidth = width
self.core.issueWidth = width
self.core.wbWidth = width
self.core.commitWidth = width

self.core.numROBEntries = rob_size

self.core.numPhysIntRegs = num_int_regs
self.core.numPhysFloatRegs = num_fp_regs

self.core.branchPred = TournamentBP()

self.core.LQEntries = 128
self.core.SQEntries = 128

Create subclass of BaseCPUProcessor/Core

▸ See
src/python/gem5/components/
processors/base_cpu_core.py

▸ And src/cpu/o3/BaseO3CPU.py

25

from m5.objects import X86O3CPU
from m5.objects import TournamentBP

class MyOutOfOrderCore(BaseCPUCore):
def __init__(self,

width, rob_size, num_int_regs,
num_fp_regs):
super().__init__(X86O3CPU(), ISA.X86)

Create subclass of BaseCPUProcessor/Core

▸ The CPUProcessor assumes a list of cores that are
BaseCPUCores

26

class MyOutOfOrderProcessor(BaseCPUProcessor):
def __init__(self, width, rob_size, num_int_regs, num_fp_regs):

cores = [MyOutOfOrderCore(width, rob_size, num_int_regs, num_fp_regs)]
super().__init__(cores)

Now, run it and compare!

▸ Takes 2-3 minutes

▸ Faster than simple in order?

▸ Use `--outdir=m5out/ooo` and `--outdir=simple`

▸ Compare the stats.txt (which stat?)

27

> gem5 materials/03-processor.py

Let’s shift gears a bit and talk about controlling the
simulation, improving performance, marking
regions of interest, fast forwarding, and more

Controlling the
simulation

28

gem5 is slloooww

29

Simulating 1

Second

>> 100k

seconds on

the host

(Not our fault: It’s the natural of simulation)

Fortunately, there are some work arounds

30

S
im

u
la

ti
o
n

 F
id

e
lit

y

Simulation Time

Key idea: You don’t
need to simulate

everything
perfectly, or at all.

Simulations can always be made faster by
simulating less

31

This isn’t always a bad thing… a lot of a simulation
is of no interest to us

32

Kernel Boot Wider OS setup
Benchmark

application load
ROI Finish and cleanup

Some techniques we provide

33

CPU Models KVM Mode

Checkpoint

Sampling:
Simpoints

and
Loopoints

SE Mode

Host System

SE mode vs FS mode

34

Full-System Simulation

Hardware

OS

Application

Host System

Syscall Emulation Simulation

Hardware

OS

Application

SE Mode relays
application syscalls to

host OS. This means

we don’t need to

simulate an OS for

applications to run

In addition, we can

access host resources

such as files of

libraries to
dynamically link in.

Goal: just run ROI in detailed mode

▸ Two ways:
▹ Use KVM CPU to fast forward

▹ Take a checkpoint

35

Kernel Boot Wider OS setup
Benchmark

application load
ROI Finish and cleanup

Fast-forwarding with KVM

▸ KVM: Kernel-based virtual machine

▸ Uses hardware virtualization extensions (e.g., nested page
tables, vmexit, etc.)

▸ gem5 uses KVM as the “CPU model”

▸ I.e., the code is actually executing on the host CPU

▸ It is fast!

▸ But, your host must match your guest

36

Checkpointing

▸ Saves the architectural state of the system

▸ Some microarchitectural state is saved

▸ Depends on the models you’re using in the simulation

▸ Can be reused many times

▸ Only some parts of the system can change between
checkpoint and restore

37

▸ Very fast (nearly native speed)

▸ Flexible to simulation system changes

▸ Flexible to software changes

▸ Non-deterministic

▸ Host must match guest

▸ No RISC-V support

▸ Only CPU

▸ Create once, run many times

▸ Almost all devices/components
supported

▸ Cannot change software at all

▸ Only some simulation system changes

▸ Significant disk space

38

KVM Checkpointing

How to designate ROI

▸ gem5 has “magic
instructions” or “bridge
calls” so the guest can
communicate with the
simulator. (Like hypercalls)

▸ Often called “m5ops”
though we are trying to
rename to “gem5-bridge”

39

#ifdef HOOKS
roi_begin_();

#endif
/* This is the main iteration */

for(iteration=1; iteration<=MAX_ITERATIONS
{

if(CLASS != 'S') printf(" %d\
rank(iteration);

}
/* End of timing, obtain maximum time of all processors */

timer_stop(0);
timecounter = timer_read(0);

#ifdef HOOKS
roi_end_();

#endif
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void roi_begin_(){

printf(" -------------------- ROI BEGIN --------------------
m5_work_begin(0,0);

}



Let’s explore fast forwarding, checkpointing 
and ROI annotations

▸ Boot Ubuntu 24.04

▸ Use materials/isca24/05-fs-npb.py

40

workload = obtain_resource("x86-ubuntu-24.04-boot-with-systemd")



Booting Linux is complicated…

41

Boot the kernel
(Has command line parameters)

Start systemd tasks

Auto login as gem5 user

Execute a script
(provided by gem5 simulator)

Can 
skip

Can 
skip

Simulator exit event

Simulator exit event

Simulator exit event



Controlling simulator events

42

def on_exit():
print("Exiting the simulation for kernel boot")
yield False
print("Exiting the simulation for systemd complete")
yield False

simulator = Simulator(
board=board,
on_exit_event={

ExitEvent.EXIT: on_exit(),
},

)

on_exit is a python “generator”
False means “keep going”
True means “exit gem5”



Many different kinds of exit events

▸ We use “EXIT” too much (changes coming soon)

▸ WORKBEGIN and WORKEND also common

43

EXIT = "exit" # A standard vanilla exit.
WORKBEGIN = "workbegin" # An exit because a ROI has been reached.
WORKEND = "workend" # An exit because a ROI has ended.
SPATTER_EXIT = "spatter exit" # An exit because a spatter core has ended.
SWITCHCPU = "switchcpu" # An exit needed to switch CPU cores.
FAIL = "fail" # An exit because the simulation has failed.
CHECKPOINT = "checkpoint" # An exit to load a checkpoint.
SCHEDULED_TICK = "scheduled tick exit"
MAX_TICK = "max tick" # An exit due to a maximum tick value being met.
USER_INTERRUPT = ( # An exit due to a user interrupt (e.g., cntr + c)

"user interupt"
)
SIMPOINT_BEGIN = "simpoint begins"
MAX_INSTS = "number of instructions reached"
PERF_COUNTER_ENABLE = "performance counter enabled"
PERF_COUNTER_DISABLE = "performance counter disabled"
PERF_COUNTER_RESET = "performance counter reset"
PERF_COUNTER_INTERRUPT = "performance counter interrupt"



How to interact?

▸ m5term (custom telnet)

44

> cd gem5/util/term

> make



Run the simulation

▸ In another window, watch it 

45

> gem5-mesi materials/04-kvm.py

> ./m5term 3456



Next step, let’s switch cores at ROI

▸ What does this do?

▸ https://resources.gem5.org/resources/x86-npb-is-size-s

▸ Boots ubuntu, executes /home/gem5/NPB3.4-OMP/bin/is.S.x

46

workload = obtain_resource("x86-ubuntu-24.04-npb-is-s-run")

https://resources.gem5.org/resources/x86-npb-is-size-s


Running workloads is complicated…

47

Boot the kernel
(Has command line parameters)

Start systemd tasks

Auto login as gem5 user

Execute is.S.x

Simulator exit event

Simulator exit event

Simulator exit event

Initialize the workload

Run the region of interest

Validate the result

ROI begin

ROI end



Fast-forward with KVM, detailed TIMING

▸ Use 05-fs-npb.py

▸ Mostly the same as 04-kvm.py

48

def on_work_begin():
print("Work begin")
m5.stats.reset()
processor.switch()
yield False

def on_work_end():
print("Work end")
yield True

simulator = Simulator(
board=board,
on_exit_event={

ExitEvent.EXIT: on_exit(),
ExitEvent.WORKBEGIN: on_work_begin(),
ExitEvent.WORKEND: on_work_end(),

},
)



Look at stats.txt

▸ Output only for the ROI!

▸ Overall, very fast

▸ Please use FS mode ☺

49



Checkpointing

▸ As easy as m5.checkpoint("checkpoint")

▸ Let’s checkpoint after booting Linux, but before the workload

▸ See 06-npb-checkpoint.py

50

def on_exit():
print("Exiting the simulation for kernel boot")
yield False
print("Exiting the simulation for systemd complete")
m5.checkpoint("checkpoint")
yield True

Note: 
SwitchableProcessor

isn’t good for 
checkpointing



Checkpointing

51

> gem5-mesi materials/05-npb-checkpoint.py



Restoring

▸ 06-npb-restore.py

52

board.set_kernel_disk_workload(
kernel=obtain_resource("x86-linux-kernel-5.4.0-105-generic"),
disk_image=obtain_resource("x86-ubuntu-24.04-npb-img"),
kernel_args=[

"earlyprintk=ttyS0",
"console=ttyS0",
"lpj=7999923",
"root=/dev/sda2"

],
readfile_contents=f"echo 12345 | sudo -S /home/gem5/NPB3.4-OMP/bin/sp.S.x; sleep 5; 

m5 exit;"
checkpoint=CheckpointResource("checkpoint")

)

processor = SimpleSwitchableProcessor(
starting_core_type=CPUTypes.KVM,
switch_core_type=CPUTypes.O3,
isa=ISA.X86,
num_cores=1,

)



Restoring

▸ Note: We can’t always change the workload like this

▸ We took the checkpoint before the file was read in.

▸ Checkpoints are separate workloads from their non-
checkpoint counterparts (in gem5-resources too!)

53



Restoring

54

def on_work_begin():
print("Work begin.")
m5.stats.reset()
processor.switch()
yield False

def on_work_end():
print("Work end")
yield False

simulator = Simulator(
board=board,
on_exit_event={

ExitEvent.WORKEND: on_work_end(),
},

)



Running the restore

▸ sp takes longer ~5 minutes with timing & 

55

> gem5-mesi materials/06-npb-restore.py

> tail m5out/board.pc.com_1.device # or m5term 3456



gem5 resources



gem5 resources

▸ Setting up simulations is complicated
▹ Kernel, operating system, libraries, workloads, annotations, inputs, etc.

▸ gem5 resources contains everything you need



gem5 resources

board = X86Board()
board.set_workload(obtain_resource("x86-ubuntu-22.04-boot-with-systemd"))
simulator = Simulator(board=board)
simulator.run() Kernel

Disk 
image Kernel 

command 
line Script to 

run after 
boot



Types of resources

▸ Files: Binaries, Kernels, Disk images, Bootloaders

▸ Directories: Checkpoint, Simpoint

▸ Workload: Combination of other resources and options

▸ Suite: Set of workloads

59



Using resources in boards

▸ board.set_workload(obtain_resource(...))
▹ Sets the workload with the “set workload function” specified in workload

▸ Can also set SE/FS workloads directly

▸ Uses “mixins” on the board class (slightly confusing)

▸ See src/python/gem5/components/boards/*_workload.py

60



board.set_se_*_workload

61

def set_se_binary_workload(
self,
binary: BinaryResource,
exit_on_work_items: bool = True,
stdin_file: Optional[FileResource] = None,
stdout_file: Optional[Path] = None,
stderr_file: Optional[Path] = None,
env_list: Optional[List[str]] = None,
arguments: List[str] = [],
checkpoint: Optional[Union[Path, CheckpointResource]] = None,

) -> None:
"""Set up the system to run a specific binary.



board.set_kernel_disk_workload

62

def set_kernel_disk_workload(
self,
kernel: KernelResource,
disk_image: DiskImageResource,
bootloader: Optional[BootloaderResource] = None,
disk_device: Optional[str] = None,
readfile: Optional[str] = None,
readfile_contents: Optional[str] = None,
kernel_args: Optional[List[str]] = None,
exit_on_work_items: bool = True,
checkpoint: Optional[Union[Path, CheckpointResource]] = None,

) -> None:
"""
This function allows the setting of a full-system run with a Kernel
and a disk image.



Using local resources

▸ File/directory resources can be created with just a path

63

BinaryResource('./hello.exe')



Creating local resource databases

▸ Create a file "gem5-config.json" 
in the current path
o Can configure multiple different databases

▸ To use a json file
o See https://www.gem5.org/documentation/

gem5-stdlib/using-local-resources 

▸ Use “Raw” tab on 
resource.gem5.org for help

64

[
{

"category": "binary",
"id": "test-binary",
"description": "A test binary",
"architecture": "RISCV",
"size": 1,
"tags": [

"test"
],
"is_zipped": false,
"md5sum": "6d9494d22b90d817e826b0d762fda973",
"source": "src/simple",
"url": "file:// path to fake_binary",
"license": "",
"author": [],
"source_url": "https://github.com/gem5/gem5-resources/tree/develop/
"resource_version": "1.0.0",
"gem5_versions": [

"23.0"
],
"example_usage": "obtain_resource(resource_id=\"test-

}
]



Workloads and suites

▸ Suites are a set of workloads

▸ Can iterate over all workloads

▸ Can filter based on “input group”

65



multisim

▸ Often, you want to run multiple workloads, “suites,” or 
design-space exploration

▸ multisim allows you to do this in parallel!

▸ Use materials/isca24/07-multisim.py

66

for workload in obtain_resource("riscv-getting-started-benchmark-suite"):
board.set_workload(workload)
simulator = Simulator(board=board, id=workload.get_id())

add_simulator(simulator)



multisim

▸ A couple of weird things

▸ 1. The script you write declares a set of “simulators” to run
▹ The simulator has the board, workload, etc.

▸ 2. You don’t run it with just “gem5” you have to use a special 
module

67

> gem5 -m gem5.utils.multisim 07-multisim.py



multisim

▸ List the simulations it will run

▸ Run one simulation

68

> gem5 07-multisim.py -l

> gem5 07-multisim.py riscv-npb-is-size-s-run



multisim

▸ More improvements coming!
▹ Managing stdout from gem5 is a bit of a pain (can use -re, but still not great)

▸ Maybe a dashboard?
▹ Time left estimate, check on status of simulations, etc.

69



LUNCH!

70


	Slide 1: gem5 standard library
	Slide 2: Outline
	Slide 3: Setting up simulations
	Slide 4: What is the standard library for? 
	Slide 5: The stdlib modular metaphor
	Slide 6: Let’s build using components! 
	Slide 7: Choose a cache, memory, & processor
	Slide 8: Quick note on SimpleProcessor 
	Slide 9: Then let’s plug them into a board 
	Slide 10: Load a workload into the board
	Slide 11: Run the simulator 
	Slide 12
	Slide 13: Components included in gem5
	Slide 14: Components: Boards
	Slide 15: Components: Cache hierarchies
	Slide 16: Components: Cache hierarchies
	Slide 17: Components: Memory
	Slide 18: Components: Processors
	Slide 19: Components: Processors
	Slide 20: Components: Processors
	Slide 21: Components: Processors
	Slide 22: Standard Library components
	Slide 23: Quick reminder of gem5’s architecture
	Slide 24: Let’s create a processor with OOO cores
	Slide 25: Create subclass of BaseCPUProcessor/Core
	Slide 26: Create subclass of BaseCPUProcessor/Core
	Slide 27: Now, run it and compare!
	Slide 28: Controlling the simulation
	Slide 29: gem5 is slloooww
	Slide 30: Fortunately, there are some work arounds
	Slide 31: Simulations can always be made faster by simulating less
	Slide 32: This isn’t always a bad thing… a lot of a simulation is of no interest to us
	Slide 33: Some techniques we provide
	Slide 34: SE mode vs FS mode
	Slide 35: Goal: just run ROI in detailed mode
	Slide 36: Fast-forwarding with KVM
	Slide 37: Checkpointing
	Slide 38: KVM
	Slide 39: How to designate ROI
	Slide 40: Let’s explore fast forwarding, checkpointing and ROI annotations
	Slide 41: Booting Linux is complicated…
	Slide 42: Controlling simulator events
	Slide 43: Many different kinds of exit events
	Slide 44: How to interact?
	Slide 45: Run the simulation
	Slide 46: Next step, let’s switch cores at ROI
	Slide 47: Running workloads is complicated…
	Slide 48: Fast-forward with KVM, detailed TIMING
	Slide 49: Look at stats.txt
	Slide 50: Checkpointing
	Slide 51: Checkpointing
	Slide 52: Restoring
	Slide 53: Restoring
	Slide 54: Restoring
	Slide 55: Running the restore
	Slide 56: gem5 resources
	Slide 57: gem5 resources
	Slide 58: gem5 resources
	Slide 59: Types of resources
	Slide 60: Using resources in boards
	Slide 61:  board.set_se_*_workload 
	Slide 62: board.set_kernel_disk_workload 
	Slide 63: Using local resources
	Slide 64: Creating local resource databases
	Slide 65: Workloads and suites
	Slide 66: multisim
	Slide 67: multisim
	Slide 68: multisim
	Slide 69: multisim
	Slide 70: LUNCH!

