
In this section, we will learn how to build a system 
to simulate using gem5's standard 
library, extend the standard library, use the 
simulator class to improve simulation 
performance, and use gem5 resources

gem5 standard library



Outline

▸ Standard library concepts

▸ Using components module

▸ Using the simulator module

▸ KVM

▸ Checkpointing

▸ Using gem5 resources



Setting up simulations

3

gem5 Config file

This allows for maximum flexibility but 
can mean creating 100s of lines of 
Python to create even a basic 
simulation.  



What is the standard library for?
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gem5 Config file

The stdlib is a library which allows for users to quickly create systems with pre-
built components.

The stdlib's module architecture allows for components (e.g. a memory system or 
a cache hierarchy setup) to be quickly swapped in and out without radical 

redesign.

stdlib



The stdlib modular metaphor
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Let’s build using components!
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Open “materials/02-components.py” You’ll see 

the above already prepared for you.

from gem5.components.boards.simple_board import SimpleBoard
from gem5.components.cachehierarchies.classic.private_l1_shared_l2_cache_hierarchy import (

PrivateL1SharedL2CacheHierarchy,
)
from gem5.components.memory.single_channel import SingleChannelDDR4_2400
from gem5.components.processors.cpu_types import CPUTypes
from gem5.components.processors.simple_processor import SimpleProcessor
from gem5.isas import ISA
from gem5.resources.resource import obtain_resource
from gem5.simulate.simulator import Simulator



Choose a cache, memory, & processor
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main_memory = SingleChannelDDR4_2400(size="2GB")
caches = PrivateL1SharedL2CacheHierarchy(

l1d_size="32KiB",
l1d_assoc=8,
l1i_size="32KiB",
l1i_assoc=8,
l2_size="256KiB",
l2_assoc=16,

)
simple_in_order_core = SimpleProcessor(

cpu_type=CPUTypes.TIMING, num_cores=1, isa=ISA.X86
)



Quick note on SimpleProcessor

▸ This does not model any particular processor

▸ It’s simple to allow you to get started

▸ Don’t use this for research if you care about CPU performance
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Then let’s plug them into a board
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board = SimpleBoard(
processor=simple_in_order_core,
memory=main_memory,
cache_hierarchy=caches,
clk_freq="3GHz",

)



Load a workload into the board
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board.set_workload(obtain_resource("x86-npb-is-size-s-run"))

Search gem5 resources for more workloads



Run the simulator
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> gem5 materials/02-components.py

A completed version of the configuration can 

be found in “materials/isca24/completed/02-

components.py”



To run

12

> gem5 materials/02-components.py

This will take about 40 seconds



Components included in gem5

▸ gem5 stdlib in src/python/gem5

▸ Two types
▹ Prebuilt: full systems with set parameters

▹ Components: Components to build 
systems

▸ Prebuilt
▹ Demo: Just examples to build off of

▹ riscvmatched: Models SiFive Unmatched
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gem5/src/python/gem5/components
----/boards
----/cachehierarchies
----/memory
----/processors

gem5/src/python/gem5/prebuilt
----/demo/x86_demo_board
----/riscvmatched



Components: Boards

▸ Boards: Things to plug into
▹ Have “set_workload” and 

“connect_things”

▸ Simple: SE-only, configurable

▸ Arm, RISC-V, and X86 versions 
for full system simulation
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gem5/src/python/gem5/components
----/boards

----/simple
----/arm_board
----/riscv_board
----/x86_board

----/cachehierarchies
----/memory
----/processors



Components: Cache hierarchies

▸ Have fixed interface to 
processors and memory

▸ Ruby: detailed cache coherence 
and interconnect

▸ CHI: Arm CHI-based protocol 
implemented in Ruby

▸ Classic caches: Hierarchy of 
crossbars with inflexible 
coherence
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gem5/src/python/gem5/components
----/boards
----/cachehierarchies

----/chi
----/classic
----/ruby

----/memory
----/processors



Components: Cache hierarchies

▸ Quick caveat… You need different gem5 binaries for different 
protocols

▸ Any binary can use “classic” caches

▸ Only one Ruby protocol per gem5 binary
▹ gem5: CHI (Fully configurable; based on Arm CHI)

▹ gem5-mesi: MESI_Two_Level (Private L1s, Shared L2)

▹ gem5-vega: GPU_VIPER (CPU: Private L1/L2 core pairs, shared L3; GPU: Private L1, 
shared L2)
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Components: Memory

▸ Preconfigured (LP)DDR3/4/5 
DIMMs
▹ Single and multi channel

▸ Integration with DRAMSim and 
DRAMSys
▹ Not needed for accuracy, but useful for 

comparisons

▸ HBM: An HBM stack
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gem5/src/python/gem5/components
----/boards
----/cachehierarchies
----/memory

----/single_channel
----/multi_channel
----/dramsim
----/dramsys
----/hbm

----/processors



Components: Processors

▸ Mostly “configurable” 
processors to build off of

▸ Generators
▹ Synthetic traffic, but act like processors

▸ Simple
▹ Only default parameters, one ISA

▸ Switchable
▹ We’ll see this later, but you can switch 

from one to another
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gem5/src/python/gem5/components
----/boards
----/cachehierarchies
----/memory
----/processors

----/generators
----/simple
----/switchable



Components: Processors

▸ Processors are made up of “cores”

▸ Cores have a “BaseCPU” as a member

▸ Processor is what interfaces with CacheHierarchy and Board

19



Components: Processors

▸ gem5 has three (or four or five) different processor models

▸ O3CPU:
▹ Out-of-order CPU with ROB, BP, Physical register file, etc.

▹ Highly configurable, but not very accurate to modern cores

▸ MinorCPU:
▹ In-order CPU with 4 stage pipeline, BP, etc.

▹ Highly configurable, similar to modern high-performance in-order designs

▸ SimpleCPU: 
▹ TimingSimpleCPU: Every instruction takes 0 cycles (just fetch time) except memory

▹ AtomicSimpleCPU: Used in atomic mode (more later)

▸ KVMCPU: more later

20



Components: Processors

▸ O3CPU and MinorCPU are highly configurable

▸ See “BaseO3CPU.py” and “BaseMinorCPU.py”

▸ Each instructions type can have its own functional unit
▹ Or one functional unit for many instruction types

▹ Functional units can specify the latency and pipeline latency

▸ Many other options as well

21



Standard Library components

▸ Designed around Extension and Encapsulation
▹ NOT designed for “parameterization”

▸ If you want to create a processor/cache hierarchy/etc. with 
different parameters
▹ Extend using object-oriented semantics

▸ Let’s see and example
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Quick reminder of gem5’s architecture

▸ We will now create a 
new component

▸ Specialize/extend the 
“BaseO3CPU” (core)

23



Let’s create a processor with OOO cores

▸ Use materials/isca24/03-processor.py

▸ Mostly the same as before, but now
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my_ooo_processor = MyOutOfOrderProcessor(
width=8, rob_size=192, num_int_regs=256, num_fp_regs=256

)



self.core.fetchWidth = width
self.core.decodeWidth = width
self.core.renameWidth = width
self.core.issueWidth = width
self.core.wbWidth = width
self.core.commitWidth = width

self.core.numROBEntries = rob_size

self.core.numPhysIntRegs = num_int_regs
self.core.numPhysFloatRegs = num_fp_regs

self.core.branchPred = TournamentBP()

self.core.LQEntries = 128
self.core.SQEntries = 128

Create subclass of BaseCPUProcessor/Core

▸ See 
src/python/gem5/components/
processors/base_cpu_core.py

▸ And src/cpu/o3/BaseO3CPU.py
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from m5.objects import X86O3CPU
from m5.objects import TournamentBP

class MyOutOfOrderCore(BaseCPUCore):
def __init__(self,

width, rob_size, num_int_regs,
num_fp_regs):
super().__init__(X86O3CPU(), ISA.X86)



Create subclass of BaseCPUProcessor/Core

▸ The CPUProcessor assumes a list of cores that are 
BaseCPUCores
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class MyOutOfOrderProcessor(BaseCPUProcessor):
def __init__(self, width, rob_size, num_int_regs, num_fp_regs):

cores = [MyOutOfOrderCore(width, rob_size, num_int_regs, num_fp_regs)]
super().__init__(cores)



Now, run it and compare!

▸ Takes 2-3 minutes

▸ Faster than simple in order?

▸ Use `--outdir=m5out/ooo` and `--outdir=simple`

▸ Compare the stats.txt (which stat?)

27

> gem5 materials/03-processor.py



Let’s shift gears a bit and talk about controlling the 
simulation, improving performance, marking 
regions of interest, fast forwarding, and more

Controlling the 
simulation
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gem5 is slloooww
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Simulating 1 

Second

>> 100k 

seconds on 

the host

(Not our fault: It’s the natural of simulation)



Fortunately, there are some work arounds
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Key idea: You don’t 
need to simulate 

everything 
perfectly, or at all.



Simulations can always be made faster by 
simulating less
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This isn’t always a bad thing… a lot of a simulation 
is of no interest to us

32

Kernel Boot Wider OS setup
Benchmark 

application load
ROI Finish and cleanup



Some techniques we provide
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CPU Models KVM Mode

Checkpoint

Sampling: 
Simpoints

and 
Loopoints

SE Mode



Host System

SE mode vs FS mode
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Full-System Simulation

Hardware

OS

Application

Host System

Syscall Emulation Simulation

Hardware

OS

Application

SE Mode relays 
application syscalls to 

host OS. This means 

we don’t need to 

simulate an OS for 

applications to run

In addition, we can 

access host resources 

such as files of 

libraries to 
dynamically link in.



Goal: just run ROI in detailed mode

▸ Two ways:
▹ Use KVM CPU to fast forward

▹ Take a checkpoint

35

Kernel Boot Wider OS setup
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Fast-forwarding with KVM

▸ KVM: Kernel-based virtual machine

▸ Uses hardware virtualization extensions (e.g., nested page 
tables, vmexit, etc.)

▸ gem5 uses KVM as the “CPU model”

▸ I.e., the code is actually executing on the host CPU

▸ It is fast!

▸ But, your host must match your guest

36



Checkpointing

▸ Saves the architectural state of the system

▸ Some microarchitectural state is saved

▸ Depends on the models you’re using in the simulation

▸ Can be reused many times

▸ Only some parts of the system can change between 
checkpoint and restore

37



▸ Very fast (nearly native speed)

▸ Flexible to simulation system changes

▸ Flexible to software changes

▸ Non-deterministic

▸ Host must match guest

▸ No RISC-V support

▸ Only CPU

▸ Create once, run many times

▸ Almost all devices/components 
supported

▸ Cannot change software at all

▸ Only some simulation system changes

▸ Significant disk space

38

KVM Checkpointing



How to designate ROI

▸ gem5 has “magic 
instructions” or “bridge 
calls” so the guest can 
communicate with the 
simulator. (Like hypercalls)

▸ Often called “m5ops” 
though we are trying to 
rename to “gem5-bridge”
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#ifdef HOOKS
roi_begin_();

#endif
/* This is the main iteration */

for( iteration=1; iteration<=MAX_ITERATIONS
{

if( CLASS != 'S' ) printf( " %d\
rank( iteration );

}
/* End of timing, obtain maximum time of all processors */

timer_stop( 0 );
timecounter = timer_read( 0 );

#ifdef HOOKS
roi_end_();

#endif
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void roi_begin_(){

printf(" -------------------- ROI BEGIN --------------------
m5_work_begin(0,0);

}



Let’s explore fast forwarding, checkpointing 
and ROI annotations

▸ Boot Ubuntu 24.04

▸ Use materials/isca24/05-fs-npb.py

40

workload = obtain_resource("x86-ubuntu-24.04-boot-with-systemd")



Booting Linux is complicated…
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Boot the kernel
(Has command line parameters)

Start systemd tasks

Auto login as gem5 user

Execute a script
(provided by gem5 simulator)

Can 
skip

Can 
skip

Simulator exit event

Simulator exit event

Simulator exit event



Controlling simulator events

42

def on_exit():
print("Exiting the simulation for kernel boot")
yield False
print("Exiting the simulation for systemd complete")
yield False

simulator = Simulator(
board=board,
on_exit_event={

ExitEvent.EXIT: on_exit(),
},

)

on_exit is a python “generator”
False means “keep going”
True means “exit gem5”



Many different kinds of exit events

▸ We use “EXIT” too much (changes coming soon)

▸ WORKBEGIN and WORKEND also common
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EXIT = "exit" # A standard vanilla exit.
WORKBEGIN = "workbegin" # An exit because a ROI has been reached.
WORKEND = "workend" # An exit because a ROI has ended.
SPATTER_EXIT = "spatter exit" # An exit because a spatter core has ended.
SWITCHCPU = "switchcpu" # An exit needed to switch CPU cores.
FAIL = "fail" # An exit because the simulation has failed.
CHECKPOINT = "checkpoint" # An exit to load a checkpoint.
SCHEDULED_TICK = "scheduled tick exit"
MAX_TICK = "max tick" # An exit due to a maximum tick value being met.
USER_INTERRUPT = ( # An exit due to a user interrupt (e.g., cntr + c)

"user interupt"
)
SIMPOINT_BEGIN = "simpoint begins"
MAX_INSTS = "number of instructions reached"
PERF_COUNTER_ENABLE = "performance counter enabled"
PERF_COUNTER_DISABLE = "performance counter disabled"
PERF_COUNTER_RESET = "performance counter reset"
PERF_COUNTER_INTERRUPT = "performance counter interrupt"



How to interact?

▸ m5term (custom telnet)
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> cd gem5/util/term

> make



Run the simulation

▸ In another window, watch it 
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> gem5-mesi materials/04-kvm.py

> ./m5term 3456



Next step, let’s switch cores at ROI

▸ What does this do?

▸ https://resources.gem5.org/resources/x86-npb-is-size-s

▸ Boots ubuntu, executes /home/gem5/NPB3.4-OMP/bin/is.S.x

46

workload = obtain_resource("x86-ubuntu-24.04-npb-is-s-run")

https://resources.gem5.org/resources/x86-npb-is-size-s


Running workloads is complicated…
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Boot the kernel
(Has command line parameters)

Start systemd tasks

Auto login as gem5 user

Execute is.S.x

Simulator exit event

Simulator exit event

Simulator exit event

Initialize the workload

Run the region of interest

Validate the result

ROI begin

ROI end



Fast-forward with KVM, detailed TIMING

▸ Use 05-fs-npb.py

▸ Mostly the same as 04-kvm.py
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def on_work_begin():
print("Work begin")
m5.stats.reset()
processor.switch()
yield False

def on_work_end():
print("Work end")
yield True

simulator = Simulator(
board=board,
on_exit_event={

ExitEvent.EXIT: on_exit(),
ExitEvent.WORKBEGIN: on_work_begin(),
ExitEvent.WORKEND: on_work_end(),

},
)



Look at stats.txt

▸ Output only for the ROI!

▸ Overall, very fast

▸ Please use FS mode ☺

49



Checkpointing

▸ As easy as m5.checkpoint("checkpoint")

▸ Let’s checkpoint after booting Linux, but before the workload

▸ See 06-npb-checkpoint.py

50

def on_exit():
print("Exiting the simulation for kernel boot")
yield False
print("Exiting the simulation for systemd complete")
m5.checkpoint("checkpoint")
yield True

Note: 
SwitchableProcessor

isn’t good for 
checkpointing



Checkpointing
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> gem5-mesi materials/05-npb-checkpoint.py



Restoring

▸ 06-npb-restore.py
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board.set_kernel_disk_workload(
kernel=obtain_resource("x86-linux-kernel-5.4.0-105-generic"),
disk_image=obtain_resource("x86-ubuntu-24.04-npb-img"),
kernel_args=[

"earlyprintk=ttyS0",
"console=ttyS0",
"lpj=7999923",
"root=/dev/sda2"

],
readfile_contents=f"echo 12345 | sudo -S /home/gem5/NPB3.4-OMP/bin/sp.S.x; sleep 5; 

m5 exit;"
checkpoint=CheckpointResource("checkpoint")

)

processor = SimpleSwitchableProcessor(
starting_core_type=CPUTypes.KVM,
switch_core_type=CPUTypes.O3,
isa=ISA.X86,
num_cores=1,

)



Restoring

▸ Note: We can’t always change the workload like this

▸ We took the checkpoint before the file was read in.

▸ Checkpoints are separate workloads from their non-
checkpoint counterparts (in gem5-resources too!)

53



Restoring
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def on_work_begin():
print("Work begin.")
m5.stats.reset()
processor.switch()
yield False

def on_work_end():
print("Work end")
yield False

simulator = Simulator(
board=board,
on_exit_event={

ExitEvent.WORKEND: on_work_end(),
},

)



Running the restore

▸ sp takes longer ~5 minutes with timing & 
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> gem5-mesi materials/06-npb-restore.py

> tail m5out/board.pc.com_1.device # or m5term 3456



gem5 resources



gem5 resources

▸ Setting up simulations is complicated
▹ Kernel, operating system, libraries, workloads, annotations, inputs, etc.

▸ gem5 resources contains everything you need



gem5 resources

board = X86Board()
board.set_workload(obtain_resource("x86-ubuntu-22.04-boot-with-systemd"))
simulator = Simulator(board=board)
simulator.run() Kernel

Disk 
image Kernel 

command 
line Script to 

run after 
boot



Types of resources

▸ Files: Binaries, Kernels, Disk images, Bootloaders

▸ Directories: Checkpoint, Simpoint

▸ Workload: Combination of other resources and options

▸ Suite: Set of workloads

59



Using resources in boards

▸ board.set_workload(obtain_resource(...))
▹ Sets the workload with the “set workload function” specified in workload

▸ Can also set SE/FS workloads directly

▸ Uses “mixins” on the board class (slightly confusing)

▸ See src/python/gem5/components/boards/*_workload.py

60



board.set_se_*_workload

61

def set_se_binary_workload(
self,
binary: BinaryResource,
exit_on_work_items: bool = True,
stdin_file: Optional[FileResource] = None,
stdout_file: Optional[Path] = None,
stderr_file: Optional[Path] = None,
env_list: Optional[List[str]] = None,
arguments: List[str] = [],
checkpoint: Optional[Union[Path, CheckpointResource]] = None,

) -> None:
"""Set up the system to run a specific binary.



board.set_kernel_disk_workload
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def set_kernel_disk_workload(
self,
kernel: KernelResource,
disk_image: DiskImageResource,
bootloader: Optional[BootloaderResource] = None,
disk_device: Optional[str] = None,
readfile: Optional[str] = None,
readfile_contents: Optional[str] = None,
kernel_args: Optional[List[str]] = None,
exit_on_work_items: bool = True,
checkpoint: Optional[Union[Path, CheckpointResource]] = None,

) -> None:
"""
This function allows the setting of a full-system run with a Kernel
and a disk image.



Using local resources

▸ File/directory resources can be created with just a path

63

BinaryResource('./hello.exe')



Creating local resource databases

▸ Create a file "gem5-config.json" 
in the current path
o Can configure multiple different databases

▸ To use a json file
o See https://www.gem5.org/documentation/

gem5-stdlib/using-local-resources 

▸ Use “Raw” tab on 
resource.gem5.org for help

64

[
{

"category": "binary",
"id": "test-binary",
"description": "A test binary",
"architecture": "RISCV",
"size": 1,
"tags": [

"test"
],
"is_zipped": false,
"md5sum": "6d9494d22b90d817e826b0d762fda973",
"source": "src/simple",
"url": "file:// path to fake_binary",
"license": "",
"author": [],
"source_url": "https://github.com/gem5/gem5-resources/tree/develop/
"resource_version": "1.0.0",
"gem5_versions": [

"23.0"
],
"example_usage": "obtain_resource(resource_id=\"test-

}
]



Workloads and suites

▸ Suites are a set of workloads

▸ Can iterate over all workloads

▸ Can filter based on “input group”

65



multisim

▸ Often, you want to run multiple workloads, “suites,” or 
design-space exploration

▸ multisim allows you to do this in parallel!

▸ Use materials/isca24/07-multisim.py

66

for workload in obtain_resource("riscv-getting-started-benchmark-suite"):
board.set_workload(workload)
simulator = Simulator(board=board, id=workload.get_id())

add_simulator(simulator)



multisim

▸ A couple of weird things

▸ 1. The script you write declares a set of “simulators” to run
▹ The simulator has the board, workload, etc.

▸ 2. You don’t run it with just “gem5” you have to use a special 
module

67

> gem5 -m gem5.utils.multisim 07-multisim.py



multisim

▸ List the simulations it will run

▸ Run one simulation

68

> gem5 07-multisim.py -l

> gem5 07-multisim.py riscv-npb-is-size-s-run



multisim

▸ More improvements coming!
▹ Managing stdout from gem5 is a bit of a pain (can use -re, but still not great)

▸ Maybe a dashboard?
▹ Time left estimate, check on status of simulations, etc.

69



LUNCH!

70
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