
All things

SimObject

A presentation by

Mahyar Samani

Let's start with compiling :D

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

2

SimObject and Clocked Object

· Almost all the objects in the gem5 code base are SimObjects.

· A SimObject represents things that correspond to physical components and can be

specified and instantiated via the config file (CPUs, caches, etc.).

· A ClockedObject extends the SimObject with a clock and accessor functions

(nextCycle, clockEdge) to relate ticks (the unit of time in simulation) to its cycles.

3

Adding a new SimObject

Step 1: Create a Python class (SimObject description file)

Step 2: Implement the C++

Step 3: Register the SimObject and C++ file

Step 4: (Re-)build gem5

Step 5: Create a config script

4

Let's copy the boilerplates

· Run the following command in gem5-bootcamp-env:

· "cp -r materials/developing-gem5-models/02-simobj/bootcamp gem5/src/"

5

Step 1: Create a Python class

| from m5.params import *
| from m5.SimObject import SimObject
|
| class HelloObject(SimObject):
| type = ”HelloObject"
| cxx_header = ”simobject-example/hello_object.hh"
| cxx_class = "gem5::HelloObject" Import the objects we need

m5.params: Things like
MemorySize, Int, etc.

type: The C++ class name cxx_header: The filename for the
C++ header file

HelloObject.py

cxx_class: The fully qualified
C++ class name

Step 2: Implement the C++

| #include "params/HelloObject.hh"

| #include "sim/sim_object.hh”

| namespace gem5{

| class HelloObject : public SimObject

| {

| public:

| HelloObject(const HelloObjectParams &p);

| };

| } // namespace gem5

hello_object.hh params/*.hh generated
automatically. Comes from
Python SimObject definition

Constructor has one parameter,
the generated params object.
Must be a const reference

Step 2: Implement the C++

#include ”simobject-example/hello_object.hh”

#include <iostream>

Namespace gem5 {

HelloObject::HelloObject(const HelloObjectParams ¶ms)

: SimObject(params)

{

std::cout << "Hello World! From a SimObject!" << std::endl;

}

} //

hello_object.cc

Step 3: Register the SimObject and C++ file

| Import('*')

| SimObject(HelloObject.py', sim_objects=[HelloObject'])

| Source(hello_object.cc')

SConscript
Import: SConscript is just
Python… but weird.

SimObject(): Says that this
Python file contains a SimObject.
Note: you can put pretty much
any Python in here

Source(): Tell scons to compile
this file (e.g., with g++).

sim_objects: The SimObjects
declared in the file (could be
more than 1)

Step 4: (Re-)build gem5

> scons build/NULL/gem5.opt –j`nproc`

Adding Parameters and events to the SimObject

Add this to “HelloObject.py”.

This declares the parameters of
the SimObject.

Adding Parameters and events to the SimObject

Update the “hello_object.hh” with the
parameters and the event

variables/functions.

The “processEvent” function will handle
the event.

The “event” variable will wrap the
“processEvent’ function.

The other variables store the stage of
the object and the variables

Adding Parameters and events to the SimObject

Implement the `startup` and `processEvent` functions in ”hello_object.cc”

The `startup` schedules the event before the simulation starts with ‘latency`.

The `processEvent` will continue to reschedule the event `timeLeft` times.

Adding Parameters and events to the SimObject

Because `time_to_wait` does not have a default value we must
set it in the config script.

Add this to your run script.

Adding Parameters and events to the SimObject

scons build/ALL/gem5.opt –j`nproc`

./build/ALL/gem5.opt <your run script>

After, why don’t you try running changing the default
`number_of_fires` parameter to something more interesting.

A little more to do in your own time

https://www.gem5.org/documentation/learning_gem5/part2/parameters/
contains an additional part of this tutorial which involves adding another
SimObject: “GoodbyeObject” which schedules a Goodbye event when the

HelloObject events cease scheduling

If your interested in SimObjects and creating your own this is worth doing..

https://www.gem5.org/documentation/learning_gem5/part2/parameters/

gem5 architecture: Simulating

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

gem5 architecture: Simulating

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

All SimObjects can enqueue
events to the event queue

We’ll cover more
later

Event - 55

Event - 51

Discrete event simulation example

TIME

Fetch first inst

Send req to cache

Miss in L1, send to
DRAM

Put in read Q

L1 tag latency To DRAM latency DRAM read latency

Get data from
DRAM

Cache recvs data

Processor decodes
instruction

Processor executes
instruction

Fetch next
inst

Response latency One cycle

Let’s talk about events

Events at the high level represent different types of interactions within/between

SimObjects. Each event executes a function that is called at the tick when the respective

event is scheduled.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

20

virtual void SimObject::startup()

Final initialization call before simulation starts. All state is initialized. This function is the

correct place to schedule initial events.

"gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

21

Other initialization functions

· virtual void SimObject::init(): First initialization call. All SimObjects are instantiated,

and all ports are connected.

· virtual void SimObject::initState(): Called after init() only when simulating afresh. i.e.

not called when restoring a checkpoint

· virtual void SimObject::loadState() Called after init() and only when restoring from a

checkpoint.

22

Let’s code

We will look at an example on how to initialize an event. Then students will follow as I

change the constructor of HelloObject to initialize event.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

23

Schedule(...)

Function inherited from EventManager (SimObject is EventManager). Schedules an

event on a specific tick.

Args: Event*, Tick: takes absolute time in ticks.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

24

Let’s code

Now, we have to implement the callback function for our event.

Students will follow as I implement processEvent.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

25

Let’s recompile

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

26

Let’s sim

Run the following commands in gem5:

1- "build/NULL/gem5.opt src/bootcamp/hello-sim-object/run_hello.py"

2- "build/NULL/gem5.opt --debug-flags=HelloExampleFlag src/bootcamp/hello-sim-

object/run_hello.py"

27

Let’s sim

Run the following commands in gem5:

1- "build/NULL/gem5.opt src/bootcamp/hello-sim-object/run_hello.py"

2- "build/NULL/gem5.opt --debug-flags=HelloExampleFlag src/bootcamp/hello-sim-

object/run_hello.py"

28

Do you see a difference in the outputs?

Let’s make it more interesting.

Let’s make our SimObject print “Hello world! Processing the event!” n times, every L

ticks.

"gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

29

Let’s make it more interesting.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

30

Interacting with memory

· Let's build a simple memory object with the following specs:

· Sits between CPU and memory. Forwards requests from CPU to memory and

responses from memory to CPU one Packet at a time.

· Separate interface for instruction and data requests.

31

Packets

· Encapsulation of information required to interact with memory. Some included info

are:

· MemCmd: readReq, readResp, writeReq, writeResp

· RequestorID: ID for the Requestor SimObject.

· Addr: Address of the data requested.

· Data: Depending on the MemCmd packet might have data. e.g. Request packets for

write, and response for read.

32

A high-level overview of interacting with memory

33

Packets are moved around

through ports.

Ports and Accesses

All memory objects are connected to each other through ports. Ports facilitate the movement

of data/information between different objects. There are 3 different types of accesses that

ports allow: timing, atomic, and functional.

· Timing: timing accesses move the time (simulated interactions take time). They are the

only mode of access that result in correct simulation results. (We will focus on this)

· Atomic: Used for fast-forwarding. No events are scheduled in the memory system.

Memory is accessed through a long chain of function calls.

· Functional: Used for debugging purposes. It is used for things like reading data from the

host to the simulator.

35

Request and Response Ports

Request ports facilitate requesting data from another SimObject. Important methods to note:

· sendTimingReq

· recvTimingResp

· recvReqRetry

Response ports provide Request ports with the data requested. Important methods to note:

· recvTimingReq

· sendTimingResp

· recvRespRetry

NOTE: Only ports of different types could be connected to each other.

36

Port Connection and interaction

User needs to connec ports to each other in the python using "=". PyBind takes care of

peer ports being connected to each other in C++.

IMPORTANT NOTE: Only ports of opposite type could be connected to each other.

37

38

39

40

What does it look like?

41

Lots more to do!

· See materials/…

42

Our Strategy

43

Learn

Use

Develop

Contribute

Improve

More interest

Why should I contribute to gem5?

44

You’re Nice!
- You’ve found a bug and have a fix.
- You’ve developed something useful and

want to share it.

Fame!

- Looks good on your CV.
- Companies contribute to gem5 all the

time.

Fortune!

- Get yourself known in the project.
- Good PR for your research to have it

incorporated in gem5.

“I’m scared”

45

Understandable…

Very few patches get in straight away. Most patches are
only accepted after requests for changes.

We try our best to keep feedback as constructive as
possible (don’t take it personally!).

The purpose of this session is to make it less scary!

What can I contribute?

46

Your own changes (bug fixes are very welcome!)

Check the GitHub Issue Tracker:
https://github.com/gem5/gem5/issues

https://github.com/gem5/gem5/issues

What can I contribute?

47

Some stuff we’re always needing more of:

Tests
Incorporating Syscalls for SE mode

Unimplemented ISA instructions/extensions
Useful stdlib components

Useful gem5 resources
Updating documentation on the gem5 website

Even fixing typos is helpful!

What can’t I contribute?

48

3,.It’s dangerous

You’ve changed a lot of code and
haven’t proven you’ve not yet broken

anything. Tests are required at a
minimum.

1. Anything that’ll burden the
community with too much

maintenance overhead.

Yeah, you’ve developed something nice
for us, but it’s big and complex: are you

going to stick around to help us
maintain it? Is it engineered for that to

be easy?

2. Something overly niche and lacks general
applicability

The component you made to carry out your
research may be interesting to you but

adding it to the codebase may just be bloat
to most users: Consider sharing such things

on your own git repos.

3. It doesn’t confirm to our standards

The code appears fine, but you’ve not
conformed to our style guide.

Forking and cloning

49

Step 1: Go to https://github.com/gem5/gem5

Step 2: Fork the repo

Step 3: Clone the forked repo

Where do I make changes?

50

>git switch develop

>git switch –c my-change

Making changes: CPP

51

Full style guide here:
https://www.gem5.org/documentation/general_docs/development/coding_style/

High-level overview: https://www.gem5.org/contributing#making-modifications

Doxygen is highly
recommended

http://doxygen.gem5.org

https://www.gem5.org/documentation/general_docs/development/coding_style/
https://www.gem5.org/contributing
http://doxygen.gem5.org/

Making changes: Python

52

> pip install black

> black <python file>

For variable/method/etc. Naming conventions please follow the PEP 8 naming
convention recommendations: https://peps.python.org/pep-0008/#naming-

conventions

While we try to enforce naming conventions across the gem5 project, we are aware
there are instances where they are not.

In such cases please follow the convention of the code you are modifying.

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

The biggest gotchas!

53

• Whitespace at the end of a line.
• Indentation not 4 space characters (please, no tabs)
• Lines too long (for CPP, no more than 79

characters!)

When in doubt, follow the style around you!

We have a style checker which should stop you
committing if you’ve done something wrong, but it’s

not perfect and can be side-stepped.

Ensure pre-commit is installed

54

> ./util/pre-commit-install.sh

Pre-commit ensures when you are about to commit a change a
series of checks are run on your code to ensure it conforms to

our style guide

Using git

55

> git add <files to add>

> git commit

Commit message rules

56

We have some unique rules for gem5:

1. The header must lead with tags (see MAINTAINERS.yaml for a list of

tags).

2. Headers should be clear, short descriptions of what a patch will do.

3. Headers should be no longer than 65 characters

4. A blank line separates the header and the patch description.

5. Descriptions can span multiple paragraphs, but lines should not

exceed 72 characters (this is lax rule, it’s acceptable to exceed this if

you’re quoting code, or including a URL).

View the Git Log

57

> git log

Example commit message

58

How do I push?

59

> git push

This pushes to your forked repo

Create a pull request

60

Select the branch you just pushed

Create a pull request

61

Click “Open Pull Request” under “Contribute”

Create a pull request

62

Fill out the form. Of note: Change the base branch to “develop”.
Once filled, click “Create Pull Request”

Pull Request waiting for testing and review

63

https://github.com/gem5/gem5/pulls

https://github.com/gem5/gem5/pulls

PR Review Process

64

PR Created

Tests Pass? Update change

Wait for Tests to
complete

Yes

PR Merged

PR is
reviewed by
community
member.

Suggestions made

Yes

No

Maintainer
Decides if to

merge Change Approve

Refuses (rare)

To make

changes just

push to your

forked repo

branch!

Testing overview

65

Compiler Tests (Run Weekly)

Daily Tests

Weekly Tests

CI Tests

Ex
e

cu
ti

o
n

 t
im

e

Badges are shown on the repo main page:
https://github.com/gem5/gem5?tab=readme-ov-file#testing-status

The most direct are the “CI Tests”,
you cannot merge your change
into develop without these passing
on your PR.

The rest run either daily or weekly.
It is therefore possible your PR
breaks gem5 but there’s a delay in
us finding out (so keep an eye on
these tests).

https://github.com/gem5/gem5?tab=readme-ov-file

What about the other gem5 repos?

66

gem5 Resources

https://github.com/gem5/gem5-
resources

The Sources for the gem5 Resources

Build atop “stable” to make changes for the
current release.

Built atop “develop” to make changes for the
upcoming release.

gem5 Website

https://github.com/gem5/website

The www.gem5.org sources.

Changes made to the “stable” branch are live.

Changes made to “develop” will be merged into
stable on the next gem5 release.

Neither of these are held up to the same

standards as the gem5 repo but changes
to them are reviewed.

https://github.com/gem5/gem5-resources
https://github.com/gem5/gem5-resources
https://github.com/gem5/website
http://www.gem5.org/

Some useful resources

67

https://www.gem5.org/contributing

CONTRIBUTING.md in the gem5 directory

Sometimes using git is the biggest hurdle:

• https://git-scm.com/book/en/v2 : The git book
• https://dev.to/milu_franz/git-explained-the-basics-igc : I think this is a good tutorial but is

very GitHub-centric (we don't use GitHub for gem5). Still, going through it would be
beneficial.

• https://wiki.spheredev.org/index.php/Git_for_the_lazy : Does a quick run through of the
basic Git commands. Can be good for reference.

• http://marklodato.github.io/visual-git-guide/index-en.html: A bit more complex but tries to
introduce the git data structures involved in git

• https://towardsdatascience.com/git-help-all-2d0bb0c31483: Another resource outlining both
the commands and explaining how git works.

https://www.gem5.org/contributing
https://git-scm.com/book/en/v2
https://dev.to/milu_franz/git-explained-the-basics-igc
https://wiki.spheredev.org/index.php/Git_for_the_lazy
http://marklodato.github.io/visual-git-guide/index-en.html
https://towardsdatascience.com/git-help-all-2d0bb0c31483

Caveats

gem5 is a tool, not a panacea

Most models are not validated against “real”

hardware

“All models are wrong but some are useful”

See “Architectural Simulators Considered

Harmful”by Nowatzki et al. (2015).

There are bugs!

68

Bobby’s Advice

Learn git. By that, I mean beyond “git add” and “git commit”.

Get comfortable with Object Oriented design. The gem5 codebase depends heavily on

it. Learn it and incorporate it in your work.

Don’t modify, extend! Hacking what’s already there will cause problems. Create new

SimObjects, components, scripts as needed.

Understand the data you need before trying to make gem5 go faster. SE mode,

checkpoints, faster CPU models etc. are tempting but they have trade-offs.

Do not configure your system via the command line: Configurations exist in your

configuration file and associated components, SimObjects, etc. 69

	Slide 1: All things SimObject
	Slide 2: Let's start with compiling :D
	Slide 3: SimObject and Clocked Object
	Slide 4: Adding a new SimObject
	Slide 5: Let's copy the boilerplates
	Slide 6: Step 1: Create a Python class
	Slide 7: Step 2: Implement the C++
	Slide 8: Step 2: Implement the C++
	Slide 9: Step 3: Register the SimObject and C++ file
	Slide 10: Step 4: (Re-)build gem5
	Slide 11: Adding Parameters and events to the SimObject
	Slide 12: Adding Parameters and events to the SimObject
	Slide 13: Adding Parameters and events to the SimObject
	Slide 14: Adding Parameters and events to the SimObject
	Slide 15: Adding Parameters and events to the SimObject
	Slide 16: A little more to do in your own time
	Slide 17: gem5 architecture: Simulating
	Slide 18: gem5 architecture: Simulating
	Slide 19: Discrete event simulation example
	Slide 20: Let’s talk about events
	Slide 21: virtual void SimObject::startup()
	Slide 22: Other initialization functions
	Slide 23: Let’s code
	Slide 24: Schedule(...)
	Slide 25: Let’s code
	Slide 26: Let’s recompile
	Slide 27: Let’s sim
	Slide 28: Let’s sim
	Slide 29: Let’s make it more interesting.
	Slide 30: Let’s make it more interesting.
	Slide 31: Interacting with memory
	Slide 32: Packets
	Slide 33: A high-level overview of interacting with memory
	Slide 34: Packets are moved around through ports.
	Slide 35: Ports and Accesses
	Slide 36: Request and Response Ports
	Slide 37: Port Connection and interaction
	Slide 38
	Slide 39
	Slide 40
	Slide 41: What does it look like?
	Slide 42: Lots more to do!
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Caveats
	Slide 69: Bobby’s Advice

