
Running ML Workloads in
PyTorch/TensorFlow in gem5

Matthew Poremba, Vishnu Ramadas, and Matthew

Sinclair

University of Wisconsin-Madison

vramadas@wisc.edu

mailto:vramadas@wisc.edu

2

Disclaimers

1. Currently gem5 only supports AMD’s GPU ISA

• The concepts are similar to NVIDIA GPUs

2. Currently gem5 only supports GPGPU workloads (no Vulkan,
OpenGL support)

3

Contributors

• AMD Research: Brad Beckmann, Alex Dutu, Tony Gutierrez, Michael
LeBeane, Brandon Potter, Sooraj Puthoor, & many more

• UW-Madison: Matthew Sinclair, Vishnu Ramadas, Daniel
Kouchekinia, Marco Kurzynski, Jarvis Jia, Anushka Chandrashekar,
Gaurav Jain, Charles Jamieson, Jing Li, Kyle Roarty, Mingyuan Xiang,
Bobbi Yogatama, & others

4

Graphics Processing Units (GPUs)

Tesla S870

5

Evolution of GPUs

• From being used for graphics

• To having a new killer application: Machine Learning

• … and crypto

Disclaimer: this talk will not teach you how to run crypto in gem5

6

Learning Outcomes

• By the end of this class attendees will be able to:

- Understand the basics of GPU architecture and programming.

- Understand the basics of how (AMD) GPUs are implemented in gem5.

- Compile the gem5 GPU model (and describe how and why docker support is
provided).

- Identify what additional resources gem5-resources provides.

- Run basic GPU tests on the (AMD) GPU model in both SE and FS modes

- Be able to checkpoint applications and restore from checkpoint in FS mode

- Be able to offload computation of certain kernels onto CPU in FS mode

7

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

• Running GPU programs in gem5

8

Flynn’s Taxonomy

• Focus: Data parallel workloads

• Independent, identical computation on multiple data inputs

• MIMD (Multiple Instruction, Multiple Data):

• Split independent work over multiple processors

• Subcategory: SPMD (Single Program, Multiple Data)

• Only if work is identical (same program)

• SIMD (Single Instruction, Multiple Data):

• Split identical, independent work over multiple execution units

• More efficient: eliminate redundant fetch/decode vs. SPMD/MIMD

• Use single PC and single register file

9

Flynn’s Taxonomy (cont.)

• SIMD’s cousin: SIMT (Single Instruction, Multiple Thread)

• Split identical, independent work over multiple lockstep threads

• One PC for group of lockstep threads, but multiple register files

• This is what GPUs do today

• Work well for streaming applications

• Sidenote:

• People use SIMT and SIMD somewhat interchangeably

• They do have differences though

10

Execution Model

MIMD/SPMD SIMD/Vector SIMT

x86 SSE/AVX GPUsMulticore CPUsExample

Pros

Cons

More general:
better support

for TLP

Able to mix serial
and parallel code

Easier to program,
Scatter & Gather

operations

Inefficient for
data parallelism

Gather/Scatter
implementations
more complicated

Divergence kills
performance

11

GPUs & Memory

• GPUs optimized for streaming computations

• Thus, we have a lot of streaming memory accesses

• DRAM: 100’s of GPU cycles per memory access

• How to hide this overhead & keep the GPU busy in the meantime?

• Traditional CPU approaches:

• Caches → Need spatial/temporal locality

• Streaming applications have little reuse

• OOO/Dynamic Scheduling → Need ILP

• Too power hungry, diminishing returns for GPU applications

• Multicore/Multithreading/SMT → need independent threads ✓

X

X

12

Multicore/Multhidreading/SMT on GPUs

• Group SIMT “threads” together on a GPU “core”

• SIMT threads are grouped together for efficiency

• Loose analogy: SIMT thread group ≈ one CPU SMT thread

• Difference: GPU threads are exposed to the programmer

• Execute different SIMT thread groups simultaneously

• On a single GPU “core” per-cycle SIMT thread groups swaps

• Execute different SIMT thread groups on different GPU “cores”

GPU “Core”GPU “Core”

…

GPU

13

GPU Component Names

GPU “Core”GPU “Core”

…

GPU

Thread Group

CUDA/HIP OpenCL

Thread Work-item

WavefrontWarp

Thread
Block/CTA

Workgroup

Grid
(Kernel)

NDRange
(Kernel)

14

Programming GPUs

• Program it with CUDA, HIP, or OpenCL

• CUDA = Compute Unified Device Architecture

• NVIDIA’s proprietary solution

• OpenCL = Open Computing Language

• Open, industrywide standard

• HIP = Heterogeneous interface for portability

• AMD’s open solution, its successor to OpenCL

• OpenCL partially supported inside HIP kernels

• All: Extensions to C

• Perform a “shader task” (a snippet of scalar computation) over many elements

• Internally, GPU uses scatter/gather and vector mask operations

• Other solutions:

• C++ AMP (Microsoft), OpenACC (extension to OpenMP)

15

GPU “Core”GPU “Core”

…

GPU

/ HBM

GPU Hardware Overview

16

Compute Unit (CU) – The GPU Core

• Job: run thread blocks/workgroups

• Contains multiple SIMT units (4 in picture below)

• Each cycle, schedule one SIMT unit

• SIMT unit: runs wavefronts/warps

• Run the threads

• AMD: size N (e.g., 10) wavefront instruction buffer

• 4 cycles to execute one wavefront

• Average: fetch and commit 1 wavefront/cycle

/ HBM

17

Memory Accesses

• Pseudo CUDA for contiguous access:

• Pseudo CUDA for non-contiguous access:

a+0 a+4 a+8

(hardware overhead to dynamically coalesce memory access…

 and collect the operands)

Instead issue one access

A[n:n+16*4]

gpu void add(int *a, int *b, int *c) {

 c[tid] = a[tid*2] + b[tid];

}

a+0 a+8 a+16

Instead issue two access

A[n :n+16*4],

A[n+16*4:n+32*4]

a+16*4

a+32*4

gpu void add(int *a, int *b, int *c) {

 c[tid] = a[tid] + b[tid];

} L1
Cache

Lane 0 Lane N-1

Coalescer

18

SIMT Unit – A GPU Pipeline

• Similar to a wide CPU pipeline, except only fetch 1 instr.

• 16-wide physical ALU – specific to the AMD GPU uArch supported by gem5

• 64 KB register state/SIMD unit – 4 SIMD units per CU

• Much bigger (~64X) than CPUs

• Addressing coalescing key to good performance

• Each thread potentially fetches a different piece of data

• 64 separate addresses for AMD, 32 for NVIDIA (tradeoffs)

19

L1 Caches

• Warp/Wavefront: 32 Threads, 32 Load/Store Ports to L1 Cache?

• Non-starter, even banking doesn’t solve the problem…

• Should 32 cache misses cause 32 requests to memory!?

• Aside: AMD hardware uses 64 threads per wavefronts

• Common case:

• All threads in warp/wavefront access same cache block(s)

• Addressing coalescing:

• Dynamically combine addresses generated from each lane

• Reduces in-flight memory requests, helps DRAM b/w, important

20

Address Coalescing

• 32-64 memory requests issued per memory instruction

• Common case:

• All threads in warp/wavefront access same cache block(s)

• If not: divergence

• Coalescing:

• Merge many thread’s requests into a single cache block request

• Reduces number of in-flight memory requests

• Helpful for reducing bandwidth to DRAM

• Very important for performance

21

Memory System Optimizations

• GPUs are throughput-oriented processors

• CPUs are latency-oriented

• Goal:

• Hide the latency of memory accesses with many in-flight threads

• Memory system needs must handle lots of overlapping requests

• But what if not enough threads to cover up the latency?

22

Caches To The Rescue?

• Comparison: Modern CPU and GPU caches

CPU GPU

L1 D$ capacity 64 KB 16 KB

Active threads/work-items sharing L1 D$ 2 2560

L1 D$ capacity/thread 32 KB 6.4 bytes

Last level cache (LLC) capacity 8 MB 4 MB

Active threads/work-items sharing LLC 16 163840

LLC capacity/thread 0.5 MB 25.6 bytes

GPU caches can’t be used in the same way as CPU caches

23

GPU Caches

• Goal: maximize throughput, not latency (unlike CPUs)
• Traditionally little temporal locality to exploit

• Also little spatial locality, since coalescing logic handles most of it

• L1 cache:
• Coalesce requests to same cache block by different threads

• Keep around long enough for all threads in warp/wavefront to hit

• Once

• Ultimate goal: reduce number of requests sent to DRAM

• L2 cache: DRAM staging buffer + some instruction reuse
• Ultimate goal: tolerate spikes in DRAM bandwidth

• Use specialized memories (e.g., scratchpad, texture) for any temporal locality

24

APU

• APU = CPU+GPU have a single, unified address space

• Sidenote: SQC = GPU L1 I$, TCP = GPU L1 D$, TCC = unified GPU L2$

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

CPU0 CPU1

CPU I-Cache

L1D L1D

L2

Directory
Memory

Controller
Memory

GPU

CPU

Scalar Cache

25

dGPU

• dGPU = CPU and GPU have separate, discrete address spaces

• GPU Virtual Memory (GPUVM), DMA engines (SDMA), PM4 packet processor,
host data bypass path, and interrupt handler are added (purple boxes):

• Sidenote: SQC = GPU L1 I$, TCP = GPU L1 D$, TCC = unified GPU L2$

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

CPU0 CPU1

CPU I-Cache

L1D L1D

L2

Memory

dGPU

CPU

Scalar Cache

GPU Memory

SDMAs
SDMAs

PM4

Interrupts

GPUVM

PCIe

26

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

27

MEM

CUCUCUCU
CPx86

Core

Hardware
models

CPU GPU

GCN3 ELF +
Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpen
App

Source

User space

OS kernel space

This is what a GPU app running in gem5 requires

gem5 runs or models all of this

VEGA ELF + Code
metadata

28

AMD’s ROCm Stack

• ROCm == Radeon Open Compute

• ROCm stack
• Runtime layer – ROCr

• Thunk (user-space driver) – ROCt

• Kernel fusion driver (KFD) – ROCk (in linux)

• MIOpen – machine intelligence (ML) library

• rocBLAS – BLAS (e.g., GEMMs) library

• HIP – GPU programming language (roughly: LLVM backend, clang front-end)

• …

• In SE mode, gem5 simulates all of these except ROCk, which it emulates
through docker

• In FS mode, the disk image contains the entire ROCm stack and gem5 simulates
it

29

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

30

GPU Model Codebase

• gem5  Top-level directory
• src/

• arch/amdgpu/

• vega/  Vega ISA
• gpu-compute/  GPU core (CU) model

• Instruction buffering, Registers, Vector ALUs

• mem/protocol/  Memory model
• mem/ruby/  Memory model

• L1I cache, L1D cache, L2 cache, directory for APU (all Ruby based)

• dev/hsa/  HSA device models
• dev/amdgpu/  ROCr runtime, DMA engine, packet processors, virtual memory etc.

• configs/

• example/  apu_se.py
• Connects multiple CUs, caches, etc. together to create overall APU model

• example/gpufs  mi200.py, mi300.py, Disjoint_VIPER.py
• mi200.py, mi300.py connect multiple Cus, caches, together to create overall dGPU model
• Disjoint_VIPER.py configures the cache hierarchy and interconnects

• ruby/  GPU_VIPER.py
• APU protocol configs

Used in FS mode

31

GPU Kernel Execution

• User space SW talks to GPU via ioctl()

• ROCk (handles ioctl) is emulated in SE mode

• ROCk is simulated in FS mode

• CP (Command Proc) frontend

• Two primary components:

• HSA packet processor (HSAPP)

• Workgroup dispatcher

• Runtime creates soft HSA queues

• HSAPP maps them to hardware queues

• HSAPP schedules active queues

• Runtime creates and enqueues AQL packets

• Packets include:

• Kernel resource requirements

• Kernel size

• Kernel code object pointer

• More…

MEM

CU

GPU
HSAPP

Dispatcher

HW Model Components

ROCk

User Space SW

ioctl()

gpu_compute_driver.[hh|cc]

dev/hsa/hsa_packet_processor.[hh|cc]

dev/hsa/hw_scheduler.[hh|cc]

CP

Head ptr

Tail ptr

HSA software queue

HW queue

HW Queue
Scheduler

hsa_packet.hh

hsa_queue.hh

kernels work-
groups

32

GPU Kernel Execution (cont.)

• Kernel dispatch is resource limited

• WGs are scheduled to CUs

• Dispatcher tracks status of in-
flight/pending kernels

• If a WG from a kernel cannot be
scheduled, it is enqueued until resources
become available

• When all WGs from a task have
completed, the dispatcher frees CU
resources and notifies the host

1) Try to dispatch WGs on every cycle

2) Pick oldest AQL pkt in queue; if it has
unexecuted WGs, try to schedule them on a CU

3) Dispatch WG to CU if there are enough WF
slots, enough GPRs, and enough LDS space

Shader

CU CU CU

GPU Dispatcher

AQL Pkt

AQL Pkt

-

HSA Queue Entry
(AQL kernel)

0

1

2

3

ID

AQL Pkt

Grid
wg(0, 0, 0) wg(1, 0, 0)

wg(0, 1, 0) wg(1, 1, 0)

dispatcher.[hh|cc]

hsa_queue_entry.hh

33

GPU Execution Pipeline

• Pipeline stages

• Fetch: fetch for dispatched WFs - fetch_stage.[hh|cc] and fetch_unit.[hh|cc]

• Scoreboard: Check which WFs are ready - scoreboard_check_stage.[hh|cc]

• Schedule: Select a WF from the ready pool - schedule_stage.[hh|cc]

• Execute: Run WF on execution resource - exec_stage.[hh|cc]

• Memory pipeline: Execute (local data store) LDS/global memory operation

• local_memory_pipeline.[hh|cc]

• global_memory_pipeline.[hh|cc]

• scalar_memory_pipeline.[hh|cc]

Fetch Scoreboard Schedule Execute
Memory
pipeline

Fetched WFs Ready WFs Executing WFs

Local memory (LDS)

Global memory (TCP)
Scalar memory

34

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

35

Current Support

• ROCm supported in gem5: ROCm v4.0 (SE), ROCmv6.1 (FS)

• AMD GPU support
• Vega (gfx900 – dGPU, gfx902 – APU)

• MI200 (gfx90a – dGPU), MI300 (gfx942 – dGPU)

• MI200/MI300 models tensor cores but use a VEGA-like ISA

• MI200 is currently better tested than MI300

• If you want to run application on the VEGA, MI200, or MI300 model in gem5, you need to
compile applications for the appropriate gfx9* model

• Only officially supported gfx9* GPUs can be run in gem5 Full System with real driver

• Standard library: currently not supported – use apu_se.py, mi200.py, mi300.py
instead

• Currently only supports Ruby

• GPUFS is only supported on Vega/MI300 with dGPU devices

36

GPU Full System Simulation

• While SE mode simulates an APU, GPU full system mode (GPUFS)
simulates application in dGPU

• Caveat: As of gem5 24.0, X86 KVM CPU and Atomic CPU are supported

• When using KVM CPU, gem5 host machine must be X86 with KVM support

• Support for other models is in progress.

• Main GPUFS differences vs. SE mode:

• ROCk (Linux kernel driver) is simulated instead of emulated

• GPU DMA engines and packet processors are modeled in GPUFS

• GPU virtual memory support is available in GPUFS

• Faster simulation speeds because of simpler CPU models

37

Creating Portable gem5 Resources

• Docker container
• Properly installs ROCm software stack for use in SE mode

• Used for compiling applications for both SE and FS mode

• Publicly Available!
• Integrated into gem5 repo: https://github.com/gem5/gem5

• Added bmks & doc. in gem5-resources [Bruce ISPASS ‘20 Best Paper Nom.]

• Used in continuous integration to ensure GPU support is stable

• Strongly suggest building applications requiring ROCm with docker

• Some of our experiments today will assume this docker support
• docker pull ghcr.io/gem5/gcn-gpu:v24-0

• docker pull ghcr.io/gem5/gpu-fs:latest

Not needed today since the codespace has all the required dependencies
Might be required later if host system cannot compile GPGPU apps

For running gem5 v24.0 in SE mode
For compiling applications for gem5 v24.0 in
FS mode

https://github.com/gem5/gem5

38

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

• Running in SE mode

• Running in FS mode

• Checkpoint Creating and Restoration

• Running ML workloads in PyTorch in gem5

39

Running Square

• What is square?

• Simple vector addition program – each thread i does C[i] = A[i] + B[i]

• Ideally suited to running on a GPU (perfectly parallel)

• Already downloaded into workspaces/gem5-bootcamp-env

• Running:

• cd /workspaces/gem5-bootcamp-env/

• docker run –v $(pwd):$(pwd)
–v /usr/local/bin:/usr/local/bin -w $(pwd)
ghcr.io/gem5/gcn-gpu:v24-0 gem5-vega-se
gem5/configs/example/apu_se.py -n 3 -c square

3 threads because ROCm uses multiple processes

Should take < 5 minutes to run in gem5

Path to square binary

Base config script for running GPU models (in SE mode)

40

Output Statistics

• GPU stats are different from CPU ones – specific counters for GPU

shaderActiveTicks: how
long each CU was
running this app

41

Output Statistics (cont.)

• Some other stats unique to GPUs and not available from profiling tools:

• CU-0’s L1 cache misses and hits:
system.tcp_cntrl0.L1cache.m_demand_misses
and system.tcp_cntrl0.L1cache.m_demand_hits

• L2 cache misses and hits: system.tcc_cntrl0.L2cache.m_demand_misses
and system.tcc_cntrl0.L2cache.m_demand_hits

• CU-0’s LDS bank conflict:
system.cpu3.CUs0.ldsBankConflictDist::total

• Number of coalesced accesses at CU-0’s L1:
system.l1_coalescer0.coalescedAccesses

• CU-0’s vector ALU utilization: system.cpu3.CUs0.vALUUtilization

• And many more…

42

GPU Configuration Parameters

• Some parameters used to configure GPUs

And many more in
gem5/configs/example/apu_se.py

Example command:
gem5-vega-se configs/example/apu_se.py –n 3 –c
square –num-compute-units=20 [<other options>…]

43

GPU Configuration Parameters (cont.)

And many more in
gem5/configs/ruby/GPU_VIPER.py

44

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

• Running in SE mode

• Running in FS mode

• Checkpoint Creating and Restoration

• Running ML workloads in PyTorch in gem5

45

Creating GPUFS Resources

• Docker Container

• Contains an installation of the ROCm software stack

• Used to build applications to run in full system simulations

• Disk Image & Linux Kernel

• Linux Kernel: https://storage.googleapis.com/dist.gem5.org/dist/v24-0/gpu-
fs/kernel/vmlinux-gpu-ml.gz

• Disk Image: https://storage.googleapis.com/dist.gem5.org/dist/v24-0/gpu-
fs/diskimage/x86-ubuntu-gpu-ml.gz

• Contains a version of Linux and ROCm to be used for Full System simulation

• Pre-downloaded and present in /workspaces/gem5-bootcamp-env

• Disks can also be created manually for more recent versions

46

Building Square for GPUFS

• Need a different binary because we will be simulating the latest MI300 GPU in
FS mode

• If m5ops hasn’t been built already:

• cd /workspaces/gem5-bootcamp-env/gem5/util/m5

• scons build/x86/out/m5

• To build:

• cd /workspaces/gem5-bootcamp-env/gem5-resources/src/gpu/square

• cp /workspaces/gem5-bootcamp-env/materials/isca24/10-
gpufs/Makefile ./

• cd gem5-resources/src/gpu/square

• make

These commands are also present in
/workspaces/gem5-bootcamp-env/materials/isca24/10-gpufs/README

47

Running Square in GPUFS

• Running GPUFS does not require docker since all the required libraries are part
of the disk image. Any library or system call gets simulated in FS mode through
calls to respective files in disk image

• Command:

• cd /workspaces/gem5-bootcamp-env

• gem5-vega configs/example/gpufs/mi300.py
--app ./gem5-resources/src/gpu/square/bin/square
--disk-image ./x86-ubuntu-gpu-ml-isca
--kernel ./vmlinux-gpu-ml-isca

Application to be run

Disk image file

Kernel vmlinux file

Note: All files passed to command lines are inputs and must be valid
This requires that you have built the disk image and kernel

CPU’s console output redirected to m5out/system.pc.com_1.device

48

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

• Running in SE mode

• Running in FS mode

• Checkpoint Creating and Restoration

• Running ML workloads in PyTorch in gem5

49

Checkpoint Creation and Restoration

• Simulations are very time consuming – large scale machine learning applications
can take several days to finish

• However, only certain parts of the application are of interest to computer
architect

• A few iterations of the core algorithm might be enough to study the effect of
the underlying system on its performance

• In such situations, simulation speed can be significantly improved by
checkpointing an application right before a region of interest

• Later simulations can then resume from this point onwards and save time
that would otherwise be spent running uninteresting code

50

• Checkpointing in square

Checkpoint Creation (cont.)

Include files for checkpoint creation

Initialize m5ops variables required
for FS mode

Create checkpoint at this place

51

Checkpoint Creation (cont.)

• Update the /workspaces/gem5-bootcamp-env/gem5-
resouces/src/gpu/square/Makefile with:

• GEM5_PATH = /workspaces/gem5-bootcamp-env/gem5

• CFLAGS += -I$(GEM5_PATH)/include

• CFLAGS += –I$(GEM5_PATH)/util/m5/src

• LDFLAGS += -I$(GEM5_PATH)/util/m5/build/x86/out –lm5

• Not required for today’s tutorial. We already copied a Makefile with these
updates when building square

52

Checkpoint Creation (cont.)

• To build:

• cd /workspaces/gem5-bootcamp-env

• cp materials/isca24/10-gpufs/square-cpt/square.cpp
gem5-resources/src/gpu/square/

• cp materials/isca24/10-gpufs/mi300.py
gem5/configs/example/gpufs/

• cd gem5-resources/src/gpu/square

• make clean && make

53

Checkpoint Creation (cont.)

• Running:

• cd /workspaces/gem5-bootcamp-env

• gem5-vega gem5/configs/example/gpufs/mi300.py
--disk-image ./x86-ubuntu-gpu-ml-isca
--kernel ./vmlinux-gpu-ml-isca
--app ./gem5-resources/src/gpu/square/bin/square
--checkpoint-dir=m5out/

• Creates a checkpoint file m5.cpt in m5out/

• Contains values of all registers, TLB entries, HSA queue states, packet
processor states, etc.

• Also contains a dump of the GPU memory contents and a list of all the
addresses that were in the cache when checkpoint was taken

• Checkpoints can only be taken at kernel boundaries

54

Checkpoint Restoration

• Running:

• gem5-vega gem5/configs/example/gpufs/mi300.py
--disk-image ./x86-ubuntu-gpu-ml-isca
--kernel ./vmlinux-gpu-ml-isca
--app ./gem5-resources/src/gpu/square/bin/square
--restore-dir m5out/

• Restores all the state captured in the checkpoint state and resumes execution
from the instruction right after the call to m5_checkpoint_addr().

• Restoration includes mapping the memory dump to GPU’s memory and warming
up the cache.

55

Outline

• Background: GPU Architecture & Programming Basics

• Modeling & Using GPUs in gem5

- What libraries are required?

- Where is GPU code located?

- What support is provided?

• Running GPU programs in gem5

• Running in SE mode

• Running in FS mode

• Checkpoint Creating and Restoration

• Running ML workloads in PyTorch in gem5

56

Running PyTorch in gem5

• Running with PyTorch uses the full-system mode in gem5

• We assume no knowledge of PyTorch here

• We will go through the quickstart guide of PyTorch but running in gem5

• https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

• The quickstart runs the MNIST workload

• The disk image has been preloaded with datasets for MNIST

• We have provided some modified PyTorch applications for gem5

• These reduce the number of batches, use fast-forwarding techniques, etc.

• We will demonstrate two fast-forward techniques: Skip-to-kernel and KVM-based

• git clone https://github.com/abmerop/gem5-pytorch

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://github.com/abmerop/gem5-pytorch

57

General strategies for fast-forwarding PyTorch

• KVM-based

• We can run portions on the CPU (using KVM) and other portions on simulated GPU

• Requires modifications to the PyTorch code

• Example: Run training on CPU, move model to GPU, run inference on GPU

• Skip-to-kernel

• Useful to simulate specific kernels

• Requires that kernel has no data dependencies

• Most ML workloads don’t not necessarily depend on data from previous kernels

• Do not expect to get correct results, but will simulate a kernel

58

Running full-system mode

• GPUFS does not yet support stdlib which was taught earlier

• Use the legacy configs instead

• Full-system runs an unmodified software stack including kernel driver

• This limits to officially supported devices

• In general, a GPUFS command looks as follows for this tutorial:

/usr/local/bin/gem5-vega gem5/configs/example/gpufs/mi300.py

 --disk-image /tmp/x86-ubuntu-gpu-ml-isca --kernel ./vmlinux-gpu-ml-isca

 --no-kvm-perf --app gem5-pytorch/pytorch_test.py

• The option provided to --app will be copied from the host into gem5

59

Interacting with full-system mode

• Interact using a the m5term utility

• In util/term/ in the gem5 repository:

• make

• Connect to gem5 while running

• Open a new terminal in codespace:

• ./util/term/m5term <port>

• Port is printed in gem5 output and in codespace

New terminal
(Ctrl+Shift+’)

60

PyTorch MNIST example

• Full simulations will take several days

• We provide three examples:

• Training 1 epoch, 1 batch: gem5-pytorch/MNIST/train_1batch/

• Inference 1 epoch, 1 batch: gem5-pytorch/MNIST/test_1batch/

• Training on CPU + Inference on GPU: (Shown below)

61

PyTorch MNIST example

/usr/local/bin/gem5-vega gem5/configs/example/gpufs/mi300.py --disk-image
/tmp/x86-ubuntu-gpu-ml-isca --kernel ./vmlinux-gpu-ml-isca --no-kvm-perf --app
gem5-pytorch/MNIST/test_1batch/pytorch_qs_mnist.py

/usr/local/bin/gem5-vega gem5/configs/example/gpufs/mi300.py --disk-image
/tmp/x86-ubuntu-gpu-ml-isca --kernel ./vmlinux-gpu-ml-isca --no-kvm-perf --app
gem5-pytorch/MNIST/train_1batch/pytorch_qs_mnist.py

/usr/local/bin/gem5-vega gem5/configs/example/gpufs/mi300.py --disk-image
/tmp/x86-ubuntu-gpu-ml-isca --kernel ./vmlinux-gpu-ml-isca --no-kvm-perf --app
gem5-pytorch/MNIST/kvm-ff/pytorch_qs_mnist.py

62

Adding files to disk image

• Many PyTorch workload require input data or have multiple files

• GPUFS scripts can copy in a single file only

• Mount disk image to copy files in:

mkdir mnt

mount -o loop,offset=$((2048*512)) /tmp/x86-ubuntu-gpu-ml-isca mnt

• Copy nanoGPT into disk image

cp -r gem5-pytorch/nanoGPT/nanoGT-ff/ mnt/root/

• Unmount image: umount mnt

63

PyTorch nanoGPT example

• Forked from https://github.com/karpathy/nanoGPT/

• nanoGPT small enough to generate tokens at reasonable rate in gem5

• Still several days to simulate a full run

• We can fast-forward to kernels of interest using skip-to-kernel feature

• Example:

build/VEGA_X86/gem5.opt -d tutorial_nanogpt --debug-flags=GPUCommandProc
configs/example/gpufs/mi300.py --disk-image gem5-resources/src/x86-ubuntu-gpu-ml/disk-image/x86-ubuntu-
gpu-ml --kernel gem5-resources/src/x86-ubuntu-gpu-ml/vmlinux-gpu-ml --app gem5-pytorch/nanoGPT/train-ff.sh
--skip-until-gpu-kernel=8 --exit-after-gpu-kernel=9

• Can select arbitrary kernel to skip to

• Typically, would want to use hardware profiling to find kernel or interest

https://github.com/karpathy/nanoGPT/

64

PyTorch interactive

• We have shown some examples, now you can try your own PyTorch script

• You can run PyTorch interactively using m5term

• In util/term/ in the gem5 repository:

• make

• Connect to gem5 while running

• Open a new terminal in codespace:

• ./util/term/m5term <port>

• Port is printed in gem5 output and in codespace

New terminal
(Ctrl+Shift+’)

65

Conclusion

• In this session, we went through:

• A GPU architecture primer

• gem5’s GPU codebase organization and model behavior

• Current GPU software support in gem5

• Running GPU applications in SE and FS modes

• Checkpointing an application and restoring from it later

• Offloading kernels onto CPU for better simulator performance

• Leveraging PyTorch features to fast-forward

66

Citing our Work

• If you use GPUFS for your research, please cite the following paper.

• Simulation Support for Fast and Accurate Large-Scale GPGPU & Accelerator
Workloads. Vishnu Ramadas, Matthew Poremba, Bradford Beckmann and
Matthew D. Sinclair. In 3rd Open-Source Computer Architecture Research
(OSCAR), June 2024.

	Slide 1: Running ML Workloads in PyTorch/TensorFlow in gem5
	Slide 2: Disclaimers
	Slide 3: Contributors
	Slide 4: Graphics Processing Units (GPUs)
	Slide 5: Evolution of GPUs
	Slide 6: Learning Outcomes
	Slide 7: Outline
	Slide 8: Flynn’s Taxonomy
	Slide 9: Flynn’s Taxonomy (cont.)
	Slide 10: Execution Model
	Slide 11: GPUs & Memory
	Slide 12: Multicore/Multhidreading/SMT on GPUs
	Slide 13: GPU Component Names
	Slide 14: Programming GPUs
	Slide 15: GPU Hardware Overview
	Slide 16: Compute Unit (CU) – The GPU Core
	Slide 17: Memory Accesses
	Slide 18: SIMT Unit – A GPU Pipeline
	Slide 19: L1 Caches
	Slide 20: Address Coalescing
	Slide 21: Memory System Optimizations
	Slide 22: Caches To The Rescue?
	Slide 23: GPU Caches
	Slide 24: APU
	Slide 25: dGPU
	Slide 26: Outline
	Slide 27
	Slide 28: AMD’s ROCm Stack
	Slide 29: Outline
	Slide 30: GPU Model Codebase
	Slide 31: GPU Kernel Execution
	Slide 32: GPU Kernel Execution (cont.)
	Slide 33: GPU Execution Pipeline
	Slide 34: Outline
	Slide 35: Current Support
	Slide 36: GPU Full System Simulation
	Slide 37: Creating Portable gem5 Resources
	Slide 38: Outline
	Slide 39: Running Square
	Slide 40: Output Statistics
	Slide 41: Output Statistics (cont.)
	Slide 42: GPU Configuration Parameters
	Slide 43: GPU Configuration Parameters (cont.)
	Slide 44: Outline
	Slide 45: Creating GPUFS Resources
	Slide 46: Building Square for GPUFS
	Slide 47: Running Square in GPUFS
	Slide 48: Outline
	Slide 49: Checkpoint Creation and Restoration
	Slide 50: Checkpoint Creation (cont.)
	Slide 51: Checkpoint Creation (cont.)
	Slide 52: Checkpoint Creation (cont.)
	Slide 53: Checkpoint Creation (cont.)
	Slide 54: Checkpoint Restoration
	Slide 55: Outline
	Slide 56: Running PyTorch in gem5
	Slide 57: General strategies for fast-forwarding PyTorch
	Slide 58: Running full-system mode
	Slide 59: Interacting with full-system mode
	Slide 60: PyTorch MNIST example
	Slide 61: PyTorch MNIST example
	Slide 62: Adding files to disk image
	Slide 63: PyTorch nanoGPT example
	Slide 64: PyTorch interactive
	Slide 65: Conclusion
	Slide 66: Citing our Work

