
0.00%

25.00%

50.00%

75.00%

100.00%

sp
ec

jbb
xa

pia
n

fin
ag

le-
htt

p

fin
ag

le-
ch

irp
er

tom
ca

t
ka

fka tpc
c

wiki
pe

dia

med
ia-

str
ea

m

web
-se

arc
h

da
ta-

se
rvi

ng

ve
rila

tor

sp
ee

do
mete

r2.
0

Geo
mea

n

Performance gain of FDIP (in %) over No FDIP baseline

Phase 1: Emulate disk image using QEMU

v Enable hardware acceleration KVM or HVF if
available

v From console run the benchmark

v Wait for it to reach region of interest

Phase 2: Extract system state

v Freeze the system state from QEMU Monitor

v Attach gdb to emulated system and collect
CPU register state

v Make copy of disk image

v Dump physical memory file

v Extract disk interface state

Phase 3: Create gem5 checkpoint

v Process raw files from phase 2 using template
file to create gem5 compatible checkpoint

Phase 1

QPoints: QEMU to gem5 ARM
Full System Checkpointing

Bhargav Reddy Godala, Ishita Chaturvedi, Yucan Wu,
Simone Campanoni , David I August

Advantages

v Simulating long-duration workloads on gem5
takes prohibitively long time.

v Even with gem5’s fastest Atomic model,
reaching a steady state can be a time-
consuming task.

Introduction Workflow of creating gem5 checkpoints using QEMU

Steps to create a checkpoint

v Capability to execute intricate software with
various needs

v Handles heavy runtime environments.

v All system calls are supported.

v Near native wait times.

v Elimination of the need for building gem5 on
ARM system and faster QEMU emulation.

v Support for ARM-powered M1 Mac and free
hardware acceleration beyond KVM.

v No changes to the QEMU source code
required!

Results

*

Limitations

v Supports ARM 64-bit platforms only.

v No symbol table mapping.

v Makes debugging really hard.

v gem5’s COW and QEMU’s QCOW2 image
formats are not supported.

v Each checkpoint contains full disk image

Features

v Expanding Horizons: Hardware acceleration
support extended beyond Linux to include
platforms like Apple's HVF, an equivalent of
KVM.

v Efficiency in Sync: Support for gem5
compatible multi-core checkpoints.

Platform Configuration

v Device mapping in gem5 achieved through
QEMU Virtual Configuration.

v The configuration is exposed as new system
configuration.

v GIC v2 is enabled to support Apple M1
Checkpoints.

v Disk is attached as VirtIO device.

v The subset of VirtIO features supported by
gem5 should be used during QEMU emulation.

We collected checkpoints of 13 benchmarks
using Apple’s M1 Mac mini (HVF acceleration)

Figure 2. Performance gain of FDIP over No FDIP
baseline of 13 workloads

Links

QPoints:

 https://github.com/PrincetonUniversity/QPoints

gem5:

 https://github.com/PrincetonUniversity/gem5_FDIP

Future Work

v Support m5 like utility.

v X86 Platform Support.

v Support for compressed disk image formats
like QCOW2.

v Enable network device support.

Application /
Host Runtime

Instruction
(Billions)

Approximate
Simulation Time

Linux Boot 2.4 B ~24 min
1 second 2 B ~20 min
1 minute 120 B ~20 hours
10 minutes 1200 B ~8 days

Figure 1. Workflow of creating checkpoint on QEMU running Linux System

Phase 2 Phase 3

*

Approx. simulation time with gem5's Atomic CPU

Checkpoint State

CPU Registers

Physical Memory

Hard Disk Image

Controller State

QPoints gem5

A minimal subset of hardware state needed to
create resumable checkpoint

Published Works

v N. P. Nagendra, B. R. Godala, I. Chaturvedi, A.
Patel, S. Kanev, T. Moseley, J. Stark, G. A.
Pokam, S. Campanoni, and D. I. August,
“Emissary: Enhanced Miss Awareness
Replacement policy for l2 instruction caching,”
in Proceedings of the 50th Annual International
Symposium on Computer Architecture (ISCA
’23), June 17–21, 2023, Orlando, FL, USA,
2023

Platforms and Features

EMISSARY

