Analyzing the Benefits of More Complex Cache
Replacement Policies in Moderns GPU LLCs

Jarvis (Yuxiao) Jia and Matthew D. Sinclair
University of Wisconsin-Madison

jladd@wisc.edu sinclair@cs.wisc.edu

e?2cemMmbd

@ Background: m5 + GEMS = gem5

Ruby: more sophisticated & adaptable Classic: quick, simpler option

* More in-depth coherence support « Often easier to configure
* Only basic MOESI coherence protocol

Ruby Classic
Replacement policies LRU, PseudoLRU Random, LRU, TreePLRU, BIP, LIP, MRU,
LFU, FIFO, Second-Chance, NRU, RRIP,
BRRIP
Coherence protocols | MI_example, MESI _Two_Level, MOESI (snooping protocol)

MOESI_CMP_directory,
MOESI_CMP_token, MOESI_hammer,
MESI Three Level, CHI, ...

Problem: Ruby cannot use state-of-the-art replacement policies in Classic

g2cem> 2

@ Merging Replacement Policy Support

Ruby

* Merged the cache replacement policies from Classic to Ruby

« Users can use any of the replacement policies in either model

How to validate correctness of replacement policies?

g2cem> 3

cem>dD

Edge case

This test is targe
Access pattern: A,
Each letter repres

The [] indicate tw
[setOway setOway
[set1wayB, setlway
If you have a 512
and each cache lin
replacement policy
"A' and 'C’" in the
with Second Chance
m, m, m, m,

Explanation of the
The number after e
C, E, G are mis
C are hit. Now
rches a victi
rches a victi
C are hits.

m5.objects.Repl

generator
generator
generator
generator
generator
generator
generator.
generator
generator
generator
generator

generator

example for SecondChance RP

ting loads.
C, E, G, A,

ents a 64-byte addre

o different sets,

1, setBwa
1, setlway2,

cache with 4-way as

e is 64B. This

result:
1 letter is
ses. The cache

the cache stores ([A1

m and sele
m and selects

acementPolicies

(generator):
.createlLinear

(
.createlLinear(
.createlLinear(
.createlLinear(
.createlLinear(
.createlLinear(

(
(
(
(
(

createlLinear

.createlLinear
.createlLinear
.createlLinear
.createlLinear

.createExit()

and each set has four ways.

oclativity,
test can be used to test the correctness of
. The Second Chance replacement policy will keep the block
cache because of the second chance bit.
replacement policy,
h, h, where

More specifically,
will observe:

SecondChanceRP

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4

g2cem> 5

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4

A

Miss
g2cem> 6

Access Pattern: A,C,E, G, A,C,|L K, A, C

Way1 Way2 Way3 Way4

A C

Miss
g2cem> 7

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4
0 0 0

A C E

Miss
g2cem> 8

Access Pattern: A,C,E, G,A,C, L K, A, C

Way1 Way2 Way3 Way4
0 0 0 0

A C E G

Miss
g2cem> 9

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4
1 0 0 0

A C E G

Hit
g2cembd 10

Access Pattern: A,C,E, G, A,C,LK, A, C

Way1 Way2 Way3 Way4
1 1 0 0

A C E G

Hit
g2cembd 11

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4
0 0 0 0

A C | G

Miss
g2cembd 12

Access Pattern: A,C,E, G, A,C,|L K, A, C

Way1 Way2 Way3 Way4
0 0 0 0

A C | K

Miss
g2cemb 13

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4
1 0 0 0

A C | K

Hit
e?2cemMmbd 14

Access Pattern: A,C,E, G, A,C, LK, A, C

Way1 Way2 Way3 Way4
1 1 0 0

A C | K

Resut:t M M MMM, HH MM, H, H
g2cembd 15

@ Turns Out The Replacement Policies Had Bugs!

* Replacement Policy-specific Bugs (i.e., both Classic and Ruby)
— 20881: MRU initialized replacement incorrectly
— 20882: SecondChance initialized new entries incorrectly
- 65952: FIFO incorrect if multiple new entries in same cycle

* Integration with Ruby-specific Bugs (i.e., only in Ruby)
- 21099: Ruby called cacheProbe twice in in_ports, causing RP info to be
iIncorrect
- 62232, 63191, 64371: Ruby updated RP info twice per miss, causing LFU,
RRIP, and others to behave incorrectly (MI_example, MESI_Two Level)
— This problem may be in other Ruby protocols too

« Current Status: RPs have edge case tests integrated

— Correctness testing performed as part of gem5 regression testin

https://gem5-review.googlesource.com/c/public/gem5/+/20881
https://gem5-review.googlesource.com/c/public/gem5/+/20882
https://gem5-review.googlesource.com/c/public/gem5/+/65952
https://gem5-review.googlesource.com/c/public/gem5/+/21099
https://gem5-review.googlesource.com/c/public/gem5/+/62232
https://gem5-review.googlesource.com/c/public/gem5/+/63191
https://gem5-review.googlesource.com/c/public/gem5/+/64371

@ How Can We Use These Modern RPs in Ruby?

* Prior work has not examined more complex RPs in GPUs
« Conventional wisdom: LRU sufficient for GPUs
— Traditional GPGPU workloads have streaming access patterns

- GPGPU caches traditionally < 64B of space, on average, per thread
— Thus, unlikely data will remain in caches long enough for RP to matter

Modern GPUs used for an increasingly wide range of applications
These workloads reuse data more frequently

And modern GPUs have increasingly large LLCs

* Added support to use these RPs in gem&’s GPU LLC

g2cembd 17

@ Methodology

« System Setup:
- Vega 20 GPU (60 Compute Units, 16KB L1 D$ per CU)
- L1 latency: 143, L2 latency: 260, Scalar cache latency: 167
— Latencies based on Daniel & Vishnu's GAP work

* Metrics:
— Vary L2 (LLC) cache sizes: [256KB, 512MB] (powers of two)
- L2 Replacement Policies: FIFO, LFU, LIP, LRU, MRU, NRU, SRRIP,
SecondChance, TreePLRU
— Write-back and Write-through L2

« Study of mix of streaming and non-streaming workloads:
— Pannotia, Rodinia
— Microbenchmarks to better trace access patterns

Show a subset of these results today for brevity

g2cembd 18

NW (Needleman—-Wunsch) WT LLC Execution Time

m fifo m Ifu mlip miru Emru ®Nnru rrip second_chance tree_plru

1.23E+10
2 1.225E+10
S
o 1.22E+10
E
= 1.215E+10
c
9
£ 1.21E+10
(&)
g 1.205E+10
L
-]
o 1.2E+10
o

1.195E+10

256KB 512KB 1MB 2MB SMB 16MB 32MB 64MB 128MB 256MB 512MB

GPU LLC sizes

LFU, MRU generally worse than others — Hurt temporal locality

Little difference between rest of policies until WS fits in LLC
e?cemb 19

@ NW (Needleman—-Wunsch) WT LLC Hit Rate

m fifo m Ifu mlip mliru Emru ®nru rrip second_chance tree_plru

0.06

% 0.05

o L LI ”” ”” || If “ ||| |||| |||| |||| ||||

256KB 512KB 1MB 8VIB 16MB 32MB 64MB 128MB 256MB 512MB
GPU LLC sizes

GPU LLC Hit Rate (1.0 Ma
o o o
o (=] (=]
N w &

o
o
-

LLC Hit Rates confirm performance trends

g2cemb 20

NW (Needleman—-Wunsch) WB LLC Execution Time

m fifo m Ifu mlip miru Emru ®nru rrip second_chance tree_plru

1.25E+10

1.2E+10
1.15E+10
1.1E+10
1.05E+10
1E+10
9.5E+09
9E+09

256KB 512KB 1MB 2MB 8SMB 16MB 32MB 64MB 128MB 256MB 512MB
GPU LLC sizes

GPU Execution Time (ticks)

In general WB LLC caches outperform WT LLC caches — reuse opportunities
0 .)
55 cemb Average around 6% less execution time than WT Ny

0.12

e
-

e
o
&

S

GPU LLC Hit Rate (1.0 Max)
(<) (<)
(=] (=]
N (7]

NW (Needleman-Wunsch) WB LLC Hit Rate

m fifo m Ifu mlip mliru Emru ®nru rrip second_chance tree_pliru
____________ [R I ([I I IIII IlIIII I||I ‘ || “‘ ““ ““ “““
256KB 512KB 1MB 2MB SMB 16MB 32MB 64MB 128MB 256MB 512MB

GPU LLC sizes

Same RP trends for WT caches (just hit rates vary)
Higher average hit rate than WT

22

@ Overall Result Takeaways

 MRU and LFU generally perform worse than other RPs

« WB/WT choice seems much more important than RP choice (besides
not using MRU/LFU)

 Performance affected less by RPs as cache size grows, fixed once WS
fits in LLC

« Surprising how little RP seems to impact performance

- Hypothesis: GPU Ruby protocols have similar RP update problems as Ruby
CPU protocols

— Next Step: targeted microbenchmarks with known access patterns

g2cembd 23

@ Conclusion

Classic model has more complex RP support in gemb
— However, Ruby only supported LRU variants

We improved gem5S’s publicly available RP support
— Merged RPs — Ruby can now use Classic’s advanced RPs

— Integrated RP edge case testing into gem5’s regression testing
— Added support to use these RPs into GPU

Current Results:
- MRU and LFU fail to exploit temporal locality (bad choices for GPU)
— Other RPs provide similar performance to one another
- WB vs. WT LLC seems to matter a lot more than RP choice

Next Steps:

— Use targeted microbenchmarks to debug GPU LLC RP behavior
— Integrate RP into known good GPU models

e?2cemMmbd 24

