Vishnu Ramadas®*, Matthew Poremba”, Bradford M. Beckmann”, and
Matthew D. Sinclair*»

*University of Wisconsin-Madison, AAMD Research

vramadas@wisc.edu

Outline

* Introduction

* Proposal

* Progress

« Conclusion and Future Work

Improving gem5’s GPUFS Support

Introduction : Challenges in Application Scaling

[
100000 Computational Requirements for Training Transformers
10000 _- -6 153008 10,000,000,000 ‘
¢ 53008 e
. I 1,000,000,000 g
21000 »"Mega-
9 T TNLG, g 100,000,000
@ 100 /r GPT-3, 530B f: 10,000,000 Mega"::T'z
:) 1 75 B _:: XLNet Wav2Vec 2.0
c / 3 1,000,000
o / £ |
@) 10 /e M egatro n (; 100,000 InceptionV3 BERT Large
n / £ GPT-1
o / 'LM, 83 ;‘_3 10.000 Seq2Seq Resnet Transformer
9 , . ResNeXt
2 / V66-19 ELMo
g 3 BERT, 1,000
S 0348 AlexNet
< 0.1 100
2018 2020 2022 2024 2026 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Simulating entire workloads would take months (or years) in modern gem5
i ?
Source: How do we make it faster

1. https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
2. https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Improving gem5’s GPUFS Support

Introduction : Prior CPU-GPU Support in gemb5

Application GCN3 ELF +
source Code metadata

« Execution-driven, cycle-level
S = Models complex CPUs & GPUs
= Rapid prototyping of new features

= Validate simulation with execute-in-
Runtime loader loads execute

GCN3 ELF into memory

-—-F-- * Prior work [Gutierrez et al. HPCA '18]

ek : = Runs unmodified ROCm 1.6 user stack
= Simulates HIP and HCC applications
» HCC/HIP are AMD’'s GPGPU languages

Solid foundation, but does not support ML workloads

Improving gem5’s GPUFS Support

Introduction : ML Support in gem5 CPU-GPU system

[
_______________ GCN3/Vega ELF + }
App Source Code metadata
_______________ {["]\I x86 ELF
: !
User space :[:] :
: ! !
__Roct %
OS kernel space l[_ _ROCk_ _]:
hardware
models
We have started to add this support |

[Alsop IISWC ‘19], [Roarty gem5 Workshop ‘21] =

Improving gem5’s GPUFS Support

Introduction : GPUFS Support

* Introduced in gem5 v22.0
* Previously only supported SE mode with ROCm 4.0
* FS mode supports ROCm 4.2

* Running in SE mode required either a specific host environment containing the
ROCm stack or a Docker container that encapsulated this environment
* GPUFS removes all host requirements

* Improves simulation speed by functionally simulating memory copies

* Adds KVM CPU-GPU support

Improving gem5’s GPUFS Support

Introduction : What is KVM CPU

« Kernel-based Virtual Machine (KVM):

* Open-source virtualization technology built into Linux. Turns Linux into a hypervisor that
allows the host machine to run a virtual machine

« KVM CPU allows simulation to fast-forward by running the CPU instructions
directly on the virtual machine, instead of timing CPU models
* Requires the application binary to be compiled for the host machine architecture

« Can be used in CPU-GPU systems to fast forward through CPU code

Improving gem5’s GPUFS Support

Outline

* Proposal
* Progress
e Conclusion and Future Work

Improving gem5’s GPUFS Support

Our Vision to Run Large-Scale Workloads

« Not all parts of the application are equally interesting
* Some functions/code blocks are “more important” to its behavior

« Applications are simulated multiple times when evaluating new ideas

« Key Insight — some regions of the application can be run with low fidelity
without affecting the way the other parts interact with the underlying
hardware

e Can use KVM CPU support in GPUFS to do this

Improving gem5’s GPUFS Support

Mixed Fidelity for Less Important Application Phases

« May not want to fully simulate certain phases of applications

* Solution: leverage gem5’s KVM CPU to functionally simulate these phases
Simulated system

CPUW
GPU kerne kernel kernel

launch completion 1aunch R
Time
kernel kernel y I
functional only launch comp. kerne
) : »cpy i—E—
simulation cPul—E I\Iaunch
functional+timing =*¢"Y R
simulation Wall Clock

Improving gem5’s GPUFS Support

10

Outline

* Progress
e Conclusion and Future Work

Improving gem5’s GPUFS Support

11

Using KVM CPUs : How Much Does This Help?

* First Step : Utilized KVM support to fast forward through CPU code

Simulated system

CPUW
GPU kerne kernel kernel

launch completion launch R
Time
kernel kernel
functional only R launch comp. kernel
simulation cPU launch
functional+timing *©FY
simulation Wall Glock

Improving gem5’s GPUFS Support

12

Using KVM CPUs : How Much Does This Help?

* Cycle Level GPU Simulation : 10-50 KIPS

e Functional KVM Simulation : 100s MIPS
* KVM CPU emulating GPU : 10s MIPS

« Conservative speedup for a kernel containing 2B SIMD instructions:
* 11 hours of cycle-level GPU simulation
* 3 minutes to execute on KVM CPU - single threaded

On-going Work: full set of results for GPU workloads

13

Further Refinement : Checkpoints

« Users often simulate the same application many times

« Can speedup the execution by not redoing the less important parts

 Solution: create checkpoints (ala CPU SimPoints)

 Capture the state of the execution when a checkpoint is taken
* Restore this state the next time the application is run
* Resume execution from the next instruction after restoration

* Previously only possible for CPUs
* Added support in GPUs, leveraging gem5’s FS mode and m5 operations

Improving gem5’s GPUFS Support

14

Can We Do Even Better (Faster)?

« Current Task: convert less-important GPU kernels into CPU code
« Update LLVM GPU backend to emit CPU code for kernels
« Use KVM CPU (low fidelity) or another CPU model (medium fidelity)

« Most important phases get max fidelity, others get less fidelity

Improving gem5’s GPUFS Support

15

Can We Do Even Better (Faster)?

 Functionally simulate GPU kernels on CPU

* Preliminary results : only 1.58x — 3x slower on KVM vs bare metal (1 thread)
Simulated system

CPUW
GPU kerne kernel kernel

launch completion 1aunch R
Time
kernel kernel y I

functional only launch comp. kerne

: . g —

simulation cpul—E— B launch
functional+timing *©FY

simulation Wall Glock

Mixed Fidelity makes gem5 much closer to real HW

Improving gem5’s GPUFS Support

16

Outline

e Conclusion and Future Work

Improving gem5’s GPUFS Support

17

Conclusion and Future Work

» Large-scale applications that run on the GPU models take extremely large simulation
times

* Our updates are the first in a series to significantly reduce runtime for such workloads
 Significantly improves usability and reduce barriers to entry for simulation

* Future Work
* Profile ML workloads to find regions that can be annotated for checkpointing
* Integrate other accelerators into mainline gem5
e Support accelerator fast-forwarding and checkpointing
» Additional publicly available applications and resources

Improving gem5’s GPUFS Support

18

.@i@‘
@ WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

