Modern Front-end Support in
gemo

, Nayana Prasad Nagendra, Ishita
Chaturvedi, Simone Campanoni, David l. August

w A

PRINCETON Liberty Arcana
UNIVERSITY Research Group Research Group

Introduction

* We have seen that aggressive Out-of-Order CPUs tolerate data miss latency.

* Modern CPUs employ decoupled front-end to tolerate instruction miss
latency.

* What is a decoupled front-end?

State-of-Art Front-end

--

'—>\
i—— 2 |—| BPU | FOth L1 Dpecode f——»

: U ' Engine ; ! Back-
A IAG
T I-Cache

Traditional Front-end

FTQ: Fetch Target Queue

IFU: Instruction Fetch Unit

BPU: Branch Prediction Unit

IAG: Instruction Address Generation
NIP: Next Instruction Pointer

EMISSARY, Nagendra and Godala, et al.

State-of-Art Front-end

N Rt IFU
] BN FTQ
i— £ —>| BPU [TH— —— ;f;fnhe ——{ Decode [——* ;
., o : 1 Back-
 L— 5 5 1 end
AR IAG Prefetch
¢ TTTTmmmmmmmmmmmmmsmmsmmsmmsmmsmnees —> [|-Cache

Front-end

Fetch Directed Instruction Prefetching Pipeline (FDIP) [Glenn Reinman et al., MICRO’99]

FTQ: Fetch Target Queue

IFU: Instruction Fetch Unit

BPU: Branch Prediction Unit

IAG: Instruction Address Generation
NIP: Next Instruction Pointer

Key ldea: Prefetch in the predicted path

EMISSARY, Nagendra and Godala, et al.

Design

Challenges in Implementing FDIP in gem5

* Fetch stage is already complex.
* Dynamic Instruction objects are constructed before BPU is invoked.
* Branch Instruction is needed to invoke BPU.

* Segquence numbers are used to squash mis-speculated instructions.

Branch Sequence Numbers

* Uniqgue sequence number to identify branch.
* Every dynamic instruction contains:
* A segquence number

* Branch Sequence of prior branch

BrSeq

Seq Seq | Instruction
10 100 Br
10 101 10
10 102 11
10 103 12
11 104 Br
11 105 13
11 106 14

11

107

15

Fetch Target Queue (FTQ)

* Each entry consists of:
y ‘ Entry 2 \ ‘ Entry 1 \ Entry O

* A begin address (target of prior branch) Begin: T1 7| |Begin:To [<] |Begin: SO
Branch: B2 Branch: B1 Branch: B0
Target: T2 Target: T1 Target: TO
* End address (branch PC) BrSeq: 3 BrSeq: 2 BrSeq:1

* Target address

* Branch Sequence number

Prefetch Engine

* Prefetch Buffer:

FTQ | | |F2[F1|Fo
* Address to prefetch
| R | FO
¢ |SSU6 one prefetCh and insert Prefetch Buffer L6‘L5 L4‘L3 L2 (L1 | LO
iInto Fetch Buffer
Fetch Buffer L3|L2|L1|LO

Prefetch request issued

Pending

Ready

Modified Fetch Stage

1f instruction i1s control then:
If address == FTQ.head.branchPC:
PC = FTQ.head. target
FTQ.pop()
else:

FTQ.flush()

else:
PC += instruction.size()

Optimizations

Basic Block Based BTB

br2| brtarget2 - -

\

BB3

br3| brtarget3

Index Target Branch
target target2 br2
target2 target3d br3

BB1
br1| brtarget1 --
Index Traget
br target1
br2 target2
br3 Target3

PC based BTB

BBL based BTB

Pre-decode And Early Correction

* BBL BTB are indexed using beginning of a basic block.
* Beginning of a basic block is identified:

* Using the next instruction following a branch instruction.
* Early Correction:

* When an unconditional branch is predicted not taken.

* Flush FTQ and restart by using the pre-decoded target.

Branch Predictor Changes

* BBL Based Branch Predictor lookup.
* Branch Sequence numbers.

* |ITTAGE indirect predictor support.

X86 vs ARM

* X806: * ARM:
* Variable width instructions * Fixed width instructions
* Pre-decoding Is very expensive * Pre-decoding Is not expensive

* Micro Sequenced Ops

* Exception handling using ROM

Micro Branches in X86

* |n X86 there are instructions which are dynamically decoded to loops.
* Example: String copy

* These branches are not inserted into BTB.

* This is handled as a special case:
* These are not seen by the FDIP pipeline.
* At the time of fetch; a back edge is predicted taken.

* FTQ will not be flushed till a squash from later stages is received.

Performance Bug Fixes

* Perfect recovery of branch history.

* TAGE Bimodal table roll back.

Evaluation

Performance of ARM workloads with FDIP

90.00%

Field Alderlake like 80.00%
ISA ARM 64-bit 70.00%
L1l 32KB Yo 60.00%
L1D 64KB S 50.00%
L2 | IMB(16-way) | 2 4000%
L3 2MB E— 30.00%
FTQ 24 entry 192 inst C_J 20.00%

Width 8-wide ol 10.00%

ROB Size 512 entries o 0.00%

QLQ/sQ | 240/128/72 S £ S F PSS E S
BPU | TAGE, ITTAGE S CARNP AR S * NP Y A
BTB 16K entries N N O QQ’Q
gem5 O3 CPU simulation K

parameters

IPC Performance improvement of ARM workloads in % over No FDIP baseline

Performance of X86 workloads with FDIP

45.00%
Field Alderlake like 40.00%
ISA X86 64-bit 35.00%
11 32KB = 3000%
L1D 64KB QEJ 25 00%
::i ! MBZ(I:/?B_WEW) é 20.00%
FTQ |24 entry 192inst] £ 12007
Width 8-wide O 10.00%
ROB Size | 512 entries ; 5.00%
IQ/LQ/SQ 240/128/72 0.00%
BPU TAGE, ITTAGE é\&fb \l.&@ .@@0 /d}o@ \.\\&Q} . é& R P \QOO 0&’5@ .0,\6(\6 @0/9
BTB 16K entries &5 (b@@"’ & N TS bo@“” P
gem5 O3 CPU simulation N cha@
parameters

IPC Performance improvement of X86 workloads in % over No FDIP baseline

Performance of X86 SPEC17 workloads with FDIP

40.00%
Field Alderlake like
ISA X86 64-bit
L1] 32KB 30.00%
L1D 64KB GC,
L2 1MB (16-way) 5
S 20.00%
L3 2MB s
FTQ 24 entry 192 inst £
Width 8-wide & 10.00%
ROB Size 512 entries =
IQ/LQ/SQ 240/128/72
0.00%
BPU TAGE, ITTAGE y & ch’ & @c‘} o« & ee}(b S
BTB 16K entries & & N A S
40 w QQ O

gem5 O3 CPU simulation
parameters

IPC Performance improvement of X86 SPEC17 workloads in % over No FDIP baseline

Published Works

* EMISSARY: Enhanced Miss Awareness Replacement Policy for L2 Instruction
Caching at ISCA’23

* Session 2B

Conclusion

We implemented FDIP in gems.
A significant speedup over baseline.

This work was used in EMISSARY [ISCA’23].

Available at https://github.com/PrincetonUniversity/gemS_FDIP

Workloads: https://tinyurl.com/yjsc2aw4

https://github.com/PrincetonUniversity/gem5_FDIP
https://tinyurl.com/yjsc2aw4

Thank you
Questions?

