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Introduction

* We have seen that aggressive Out-of-Order CPUs tolerate data miss latency.

* Modern CPUs employ decoupled front-end to tolerate instruction miss
latency.

* What is a decoupled front-end?



State-of-Art Front-end
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Traditional Front-end

FTQ: Fetch Target Queue

IFU: Instruction Fetch Unit

BPU: Branch Prediction Unit

IAG: Instruction Address Generation
NIP: Next Instruction Pointer

EMISSARY, Nagendra and Godala, et al.
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Front-end

Fetch Directed Instruction Prefetching Pipeline (FDIP) [Glenn Reinman et al., MICRO’99]

FTQ: Fetch Target Queue

IFU: Instruction Fetch Unit

BPU: Branch Prediction Unit

IAG: Instruction Address Generation
NIP: Next Instruction Pointer

Key ldea: Prefetch in the predicted path

EMISSARY, Nagendra and Godala, et al.



Design



Challenges in Implementing FDIP in gem5

* Fetch stage is already complex.
* Dynamic Instruction objects are constructed before BPU is invoked.
* Branch Instruction is needed to invoke BPU.

* Segquence numbers are used to squash mis-speculated instructions.



Branch Sequence Numbers

* Uniqgue sequence number to identify branch.
* Every dynamic instruction contains:
* A segquence number

* Branch Sequence of prior branch

BrSeq

Seq Seq | Instruction
10 100 Br
10 101 10
10 102 11
10 103 12
11 104 Br
11 105 13
11 106 14

11

107

15




Fetch Target Queue (FTQ)

* Each entry consists of:
y ‘ Entry 2 \ ‘ Entry 1 \ Entry O

* A begin address (target of prior branch) Begin: T1 7| |Begin:To [<] |Begin: SO
Branch: B2 Branch: B1 Branch: B0
Target: T2 Target: T1 Target: TO
* End address (branch PC) BrSeq: 3 BrSeq: 2 BrSeq:1

* Target address

* Branch Sequence number



Prefetch Engine

* Prefetch Buffer:

FTQ | | |F2[F1|Fo
* Address to prefetch
| R | FO
¢ |SSU6 one prefetCh and insert Prefetch Buffer L6‘L5 L4‘L3 L2 (L1 | LO
iInto Fetch Buffer
Fetch Buffer L3|L2|L1|LO

Prefetch request issued

Pending

Ready




Modified Fetch Stage

1f instruction i1s control then:
If address == FTQ.head.branchPC:
PC = FTQ.head. target
FTQ.pop()
else:

FTQ.flush( )

else:
PC += instruction.size()




Optimizations



Basic Block Based BTB

br2| brtarget2 - -

\

----

BB3

br3| brtarget3

Index Target Branch
target target2 br2
target2 target3d br3

BB1
br1| brtarget1 --
Index Traget
br target1
br2 target2
br3 Target3

PC based BTB

BBL based BTB




Pre-decode And Early Correction

* BBL BTB are indexed using beginning of a basic block.
* Beginning of a basic block is identified:

* Using the next instruction following a branch instruction.
* Early Correction:

* When an unconditional branch is predicted not taken.

* Flush FTQ and restart by using the pre-decoded target.



Branch Predictor Changes

* BBL Based Branch Predictor lookup.
* Branch Sequence numbers.

* |ITTAGE indirect predictor support.



X86 vs ARM

* X806: * ARM:
* Variable width instructions * Fixed width instructions
* Pre-decoding Is very expensive * Pre-decoding Is not expensive

* Micro Sequenced Ops

* Exception handling using ROM



Micro Branches in X86

* |n X86 there are instructions which are dynamically decoded to loops.
* Example: String copy

* These branches are not inserted into BTB.

* This is handled as a special case:
* These are not seen by the FDIP pipeline.
* At the time of fetch; a back edge is predicted taken.

* FTQ will not be flushed till a squash from later stages is received.



Performance Bug Fixes

* Perfect recovery of branch history.

* TAGE Bimodal table roll back.



Evaluation



Performance of ARM workloads with FDIP
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Performance of X86 workloads with FDIP
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Performance of X86 SPEC17 workloads with FDIP
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Published Works

* EMISSARY: Enhanced Miss Awareness Replacement Policy for L2 Instruction
Caching at ISCA’23

* Session 2B



Conclusion

We implemented FDIP in gems.
A significant speedup over baseline.

This work was used in EMISSARY [ISCA’23].

Available at https://github.com/PrincetonUniversity/gemS_FDIP

Workloads: https://tinyurl.com/yjsc2aw4



https://github.com/PrincetonUniversity/gem5_FDIP
https://tinyurl.com/yjsc2aw4

Thank you
Questions?



