
Maryam Babaie, Ayaz Akram, and Jason Lowe-Power
DArchR, Computer Science Department, UC-Davis

gem5 Workshop at ISCA 2023

Orlando, FL, USA

What not to do when simulating
large workloads!

Introduction

2

• The methodology refers to the settings of the experimental infrastructures.
• Benchmark application

• Simulation configuration

• Evaluation metrics

• Properly measuring the amount of actual work progress at each run is vital!

• This is a difficult task in large-scale applications [1].

• Threads interfere with one another.

• Long spin-loops

Problem:

For large-scale applications, we must pick a portion that is representative and ensure that across
different configurations the same portion will be compared.

Example

3

• We want to evaluate a proposed cache hierarchy.

• Benchmarks: a subset of GAPBS (input 22), NPB (class C) applications.

• Comparing 3 systems: Config.1, Config.2, Config.3

• Checkpoint: stores the architectural state of the system (e.g., the state of caches).
• Each microarchitecture can restore it and will ensure that they all start with the same state.

Linux boot and start workload

KVM CPU
(Kernel-based Virtual Machine)

Allows to fast-forward the booting process.

ROI Begin

Detailed CPU
100 (ms)

Take Checkpoint

One time cost!

Warm-up Detailed simulation for 1 (s)

Restore Checkpoint

Config. 1

Config. N

…

(region of interest)

Time

Most of cache
accesses are cold misses.

Fixed time is used in prior works [2, 3].
1 (s) simulates reasonable number of
instructions in a reasonable time.

• This is a fixed time simulation. So, we use IPC for evaluation.

• bt from NPB suite, in Config.2, never finished 1 (s) simulation within an expected
time-frame! (busy in spin-loop)

Experiment 1

4

5

• Experiment 2: speedup of two new systems (Config. 4 and 5), compared to Config.1

• 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐶𝑜𝑛𝑓𝑖𝑔. 𝑛 =
𝐼𝑃𝐶 𝐶𝑜𝑛𝑓𝑖𝑔. 𝑛

𝐼𝑃𝐶 𝐶𝑜𝑛𝑓𝑖𝑔. 1

• bt in Config.5 is an outlier without any reason explained by Config.5.

Experiment 2

What’s the issue?

• The detailed simulations are bounded by a fixed execution time.

• The Restore1(sec) part does not guarantee:

• Maintaining the same program phase across different configurations for
comparison fairness.

• Alameldeen et al. reported counting instructions as a metric to measure work progress
and for performance comparison can lead to misleading conclusions [4].

• They proposed a transaction time approach, instead.

• Too long and complicated.

6

“... we recommend measuring the
time required to complete a fixed
number of transactions (or requests)
after a suitable warm-up time to
eliminate cold-start effects. …”

Solution

• NOT using a fixed time and counting instructions for comparison.

• LoopPoint: sampling technique for multi-threaded HPC applications with spin-loops [1].

• Selects repeatable loop boundaries of a practical region size.

• Records the most recent program counters (PC) within the region.

• Bound simulation by the most recent PC-count.

• Provides a better mechanism to properly measure amount of work progress.

7

Fixing the Methodology

Then:

Fast forward kernel boot up →Warm-up → Checkpoint → Restore1(sec)

Now:

Fast forward kernel boot up →Warm-up → Checkpoint → PC-analysis & record → Restore until PC count reaches

8

Linux boot and start workload

KVM CPU
(Kernel-based Virtual Machine)

Allows to fast-forward the booting process.

ROI Begin

100 (ms)

Take Checkpoint

One time cost!

Warm-up
Detailed simulation
until PC count reaches.

Restore Checkpoint

Config. 1

Config. N

…

(region of interest)

Time

Most of cache
accesses are cold misses.

Restore Checkpoint

PC analysis & record

New Results

9

Before

After

New Results

10

Before

After

𝑆𝑝𝑒𝑒𝑑𝑢𝑝

=
𝐼𝑃𝐶 𝐶𝑜𝑛𝑓𝑖𝑔. 𝑛

𝐼𝑃𝐶 𝐶𝑜𝑛𝑓𝑖𝑔. 1

𝑆𝑝𝑒𝑒𝑑𝑢𝑝

=
𝑡𝑖𝑚𝑒 𝐶𝑜𝑛𝑓𝑖𝑔. 1

𝑡𝑖𝑚𝑒 𝐶𝑜𝑛𝑓𝑖𝑔. 𝑛

Summary

• Properly measuring the amount of work progress in evaluation of large-scale application is
vital.

• Using a fixed simulation-time approach can be misleading in these applications.

Fast forward kernel boot up →Warm-up → Checkpoint → Restore1(sec)

• Techniques like LoopPoint help in accurately tracking the amount of work progress for
simulation of large-scale applications.

Fast forward kernel boot up →Warm-up → Checkpoint → PC-analysis & record → Restore until PC count reaches

11

Thank You!

12

Q & A

References

[1] Sabu, A., Patil, H., Heirman, W., & Carlson, T. E. (2022, April). LoopPoint: Checkpoint-driven sampled
simulation for multi-threaded applications. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (pp. 604-618). IEEE.

[2] Jevdjic, D., Loh, G. H., Kaynak, C., & Falsafi, B. (2014, December). Unison cache: A scalable and
effective die-stacked DRAM cache. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture (pp. 25-37). IEEE.

[3] Jevdjic, D., Volos, S., & Falsafi, B. (2013). Die-stacked dram caches for servers: Hit ratio, latency, or
bandwidth? have it all with footprint cache. ACM SIGARCH Computer Architecture News, 41(3), 404-415.

[4] Alameldeen, A. R., & Wood, D. A. (2006). IPC considered harmful for multiprocessor workloads. IEEE
Micro, 26(4), 8-17.

13

	Slide 1
	Slide 2: Introduction
	Slide 3: Example
	Slide 4: Experiment 1
	Slide 5
	Slide 6: What’s the issue?
	Slide 7: Solution
	Slide 8: Fixing the Methodology
	Slide 9: New Results
	Slide 10: New Results
	Slide 11: Summary
	Slide 12: Thank You!
	Slide 13: References

